公務(wù)員期刊網(wǎng) 論文中心 正文

直觀性應(yīng)用性數(shù)學(xué)論文

前言:想要寫出一篇引人入勝的文章?我們特意為您整理了直觀性應(yīng)用性數(shù)學(xué)論文范文,希望能給你帶來(lái)靈感和參考,敬請(qǐng)閱讀。

直觀性應(yīng)用性數(shù)學(xué)論文

1數(shù)學(xué)學(xué)習(xí)必須體現(xiàn)直觀性原則

1.1數(shù)學(xué)圖示類的直觀

講授《高等數(shù)學(xué)》定積分時(shí),一個(gè)常用技巧就是化簡(jiǎn)具有奇偶性的函數(shù)在對(duì)稱區(qū)間的積分。課本上一道例題給出了化簡(jiǎn)法則的代數(shù)證明,但是純代數(shù)推導(dǎo)過(guò)程會(huì)讓學(xué)生感覺過(guò)于抽象,課程也會(huì)變得乏味。如果使用直觀的圖形,進(jìn)行無(wú)字證明,就可以讓學(xué)生從圖示中直接看到奇函數(shù)積分左右抵消的結(jié)果。再進(jìn)一步加強(qiáng),對(duì)稱中心(對(duì)稱軸)不在原點(diǎn)(y軸)時(shí),也可以通過(guò)平移使用這個(gè)性質(zhì),常見的情形如:任意正(余)弦函數(shù)在每個(gè)波峰波谷之間的半個(gè)周期上的定積分都是零,而不一定要關(guān)于原點(diǎn)對(duì)稱。為了讓學(xué)生更透徹更直觀地了解知識(shí)點(diǎn),需要具體的例題支撐,接下來(lái)給出例1,計(jì)算定積分∫π20sin2xdx.解答:利用倍角公式,原題可化為12∫π20(1-cos2x)dx=(12∫π20dx-∫π20cos2xd)x,可以發(fā)現(xiàn)積[分區(qū)間0,π]2恰好是cos2x從波峰到波谷的半個(gè)周期,因此這一部分積分為0,原題最終結(jié)果等于12∫π20dx=π4。學(xué)生直觀的看到較復(fù)雜的函數(shù)計(jì)算也可以簡(jiǎn)化,自然對(duì)這個(gè)性質(zhì)印象深刻,應(yīng)用起來(lái)也會(huì)得心應(yīng)手。

1.2實(shí)際操作類的直觀

《概率論》的貝葉斯公式一節(jié)有一個(gè)著名的問(wèn)題———三門問(wèn)題。例2在一個(gè)電視節(jié)目中,有3扇關(guān)閉了的門,其中有一扇門的后面獎(jiǎng)品是汽車,另外兩扇門后面的獎(jiǎng)品則是一只山羊,當(dāng)然我們都希望拿到汽車,而不愿意把山羊領(lǐng)回家。當(dāng)參賽者選定了一扇門,但未去開啟它的時(shí)候,知道內(nèi)情的節(jié)目主持人開啟剩下兩扇門的其中一扇,故意露出其中一只山羊。請(qǐng)問(wèn)此時(shí)是否應(yīng)該換另一扇仍然關(guān)上的門?這個(gè)問(wèn)題出自于名為L(zhǎng)et'sMakeaDeal的美國(guó)電視節(jié)目,經(jīng)常出現(xiàn)在網(wǎng)絡(luò)論壇上,每次都會(huì)引起激烈的爭(zhēng)論,因?yàn)殡m然該問(wèn)題的答案在邏輯上并不自相矛盾,但十分違反直覺。和網(wǎng)上的情形一樣,課堂上也出現(xiàn)了兩種完全不同的聲音。如果僅僅通過(guò)計(jì)算得到結(jié)果,似乎做不到讓學(xué)生“口服心服”。因此我們可以課堂上現(xiàn)場(chǎng)操作這樣一個(gè)具體案例,讓學(xué)生在操作過(guò)程中回歸概率的本質(zhì),直觀地看到這個(gè)結(jié)果,再進(jìn)一步分析為什么會(huì)有這樣的結(jié)果,經(jīng)過(guò)這樣一個(gè)實(shí)際操作的模式,可以讓學(xué)生對(duì)全概公式以及貝葉斯公式的本質(zhì)更加清晰,達(dá)到了很好的學(xué)習(xí)效果。此外,此問(wèn)題的答案與主持人是否知情有關(guān):原題中主持人知情,故意開了一個(gè)“羊門”,那么更換后獲獎(jiǎng)概率從1/3上升至2/3;如果把條件稍加修改,改為主持人不知情,只是恰好打開一個(gè)“羊門”,那么換不換是一樣的,獲獎(jiǎng)率都是1/2。這個(gè)細(xì)節(jié)上的差別恰恰就是引起爭(zhēng)論的根源。

1.3現(xiàn)實(shí)情境類的直觀

《線性代數(shù)》是數(shù)學(xué)基礎(chǔ)課中抽象程度最高的課程,代數(shù)也被H.Weyl喻為“惡魔”。該課程概念繁多且環(huán)環(huán)相扣,尤其在目前數(shù)學(xué)課時(shí)并不富余的大環(huán)境下,借助數(shù)學(xué)直觀讓學(xué)生把這些抽象概念具體化,順利的制服這個(gè)“惡魔”,是一個(gè)值得探討的話題。矩陣的秩是線性代數(shù)中出現(xiàn)的第一個(gè)難于理解的概念,初學(xué)者在看完定義后的困惑就是“這個(gè)概念究竟要干什么?有什么用?”。此時(shí)可以給出一個(gè)不太嚴(yán)格,但是很直觀的解釋———秩就是矩陣包含的信息量!再給出秩為0、1、2的矩陣配合定義加以說(shuō)明,學(xué)生腦中秩的直觀印象就建立起來(lái)了。再由此可以深入淺出地介紹其他一些和秩相關(guān)的理論。如齊次線性方程組解空間的維數(shù),也可以從直觀的角度加以說(shuō)明。如果方程組中一個(gè)方程都沒有,那么n維空間中隨意一點(diǎn)都滿足方程組,有n個(gè)自由度,每添加一個(gè)新的方程就相當(dāng)于限制了一個(gè)自由度。但是重要的不是方程的總數(shù),也許100個(gè)方程的信息量都是重復(fù)的,因此重要的是“新的”方程的總數(shù),也就是矩陣的秩。還有一些常用不等式也能以直觀性原則說(shuō)明。例如r(AB)≤r(B),矩陣B所攜帶的信息量就是r(B),無(wú)論對(duì)它加以什么樣的線性變換A,也無(wú)法增加其信息量,至多只能保持不變,或者減少。同樣r(A+B)≤r(A)+r(B),矩陣疊加后信息量不會(huì)超過(guò)原來(lái)兩個(gè)矩陣的總和,還有可能因信息重復(fù)而減少,因而不等式成立。當(dāng)然直觀解釋并不是萬(wàn)能的,從上述例子可以看出,為了把概念解釋的更直觀,通常需要喪失一些嚴(yán)密性。PhilipJ.Davis和ReubenHersh給出了數(shù)學(xué)直觀的一些負(fù)面性質(zhì):直觀是嚴(yán)密的對(duì)立面;直觀意味著不全面;直觀意味著不考慮問(wèn)題的細(xì)節(jié)、不對(duì)問(wèn)題進(jìn)行分析,意味著全體或統(tǒng)合。筆者認(rèn)為對(duì)于非數(shù)學(xué)專業(yè)的學(xué)生來(lái)說(shuō),這種嚴(yán)密性的缺失是可以接受的。

2數(shù)學(xué)理論應(yīng)該貼近實(shí)際應(yīng)用

德國(guó)數(shù)學(xué)家高斯曽把數(shù)學(xué)喻為“科學(xué)的女王”,體現(xiàn)了數(shù)學(xué)理論在其他各學(xué)科中的指導(dǎo)作用。我國(guó)著名數(shù)學(xué)家華羅庚也曾說(shuō)過(guò),“宇宙之大,粒子之微,火箭之速,化工之巧,地球之變,生物之謎,無(wú)處不用數(shù)學(xué)?!边@是對(duì)數(shù)學(xué)與現(xiàn)實(shí)世界關(guān)系的精彩描述,在上世紀(jì)60年代他本人也親力親為,致力于把數(shù)學(xué)應(yīng)用到實(shí)際生產(chǎn)生活當(dāng)中,在當(dāng)時(shí)極差的學(xué)術(shù)科研環(huán)境中促進(jìn)了科學(xué)技術(shù)在工農(nóng)業(yè)生產(chǎn)中的應(yīng)用。公安學(xué)和公安技術(shù)學(xué)作為新成立的一級(jí)學(xué)科,自然也離不開數(shù)學(xué)這個(gè)重要的科研工具。但是很多學(xué)生對(duì)數(shù)學(xué)的應(yīng)用性不甚了解,總認(rèn)為數(shù)學(xué)知識(shí)學(xué)了沒用,產(chǎn)生這種觀念的原因在于數(shù)學(xué)應(yīng)用并不是浮現(xiàn)于表面上,而經(jīng)常滲透在公安技術(shù)的幕后,因此,不能直接看到數(shù)學(xué)的具體應(yīng)用。因此教師在授課過(guò)程中也有責(zé)任給學(xué)生揭示數(shù)學(xué)應(yīng)用性的重要意義,讓學(xué)生了解并能主動(dòng)運(yùn)用數(shù)學(xué)工具進(jìn)行專業(yè)研究。數(shù)學(xué)課主要集中在前3個(gè)學(xué)期,學(xué)生的知識(shí)儲(chǔ)備還不夠豐富,所以很多高深技術(shù)的數(shù)學(xué)應(yīng)用他們并不理解,為解決這個(gè)矛盾,更需要把數(shù)學(xué)應(yīng)用和數(shù)學(xué)直觀結(jié)合起來(lái),深入淺出地揭示出隱藏在公安技術(shù)背后的數(shù)學(xué)理念,讓學(xué)生看到數(shù)學(xué)在實(shí)際問(wèn)題尤其是公安問(wèn)題中的發(fā)揮強(qiáng)大作用,讓學(xué)生學(xué)得有目標(biāo)有方向有動(dòng)力。如函數(shù)連續(xù)性是較為抽象的一節(jié)內(nèi)容,這一節(jié)沒什么具體計(jì)算,通篇是理論的證明,學(xué)生學(xué)到這種知識(shí)點(diǎn)時(shí)經(jīng)常會(huì)有飄渺的感覺,為解決這種問(wèn)題可引入下面的數(shù)學(xué)模型問(wèn)題。例3把椅子放在不平的地面上,通常只有3條腿著地,放不穩(wěn),然后只需稍微挪動(dòng),一般都可以使4條腿同時(shí)著地,這是必然還是偶然?問(wèn)題的解法這里不再贅述。通過(guò)這樣一些實(shí)際生活中的例子,讓學(xué)生看到連續(xù)性理論的作用,讓飄渺在半空的知識(shí)落下來(lái)腳踏實(shí)地,對(duì)知識(shí)的理解以及運(yùn)用也會(huì)更為熟練。這個(gè)例子似乎離公安專業(yè)還是較遠(yuǎn),還不足以讓學(xué)生深刻了解數(shù)學(xué)在公安工作中的具體應(yīng)用。下面結(jié)合公安大學(xué)的公安專業(yè)特色,舉出一些體現(xiàn)公安工作中數(shù)學(xué)應(yīng)用的教學(xué)案例。

3公安工作中數(shù)學(xué)應(yīng)用性的案例教學(xué)

案例1層析成像。線性代數(shù)源自于線性方程組求解問(wèn)題,學(xué)生在初學(xué)時(shí)會(huì)覺得問(wèn)題本身過(guò)于初等,初中就開始解方程組了為什么現(xiàn)在還要學(xué)這個(gè)?在線性代數(shù)緒論中,筆者引入如下引例,層析成像的基本理論。層析成像的完整理論相當(dāng)復(fù)雜,但其基本思路是通過(guò)射線減弱的比例關(guān)系,轉(zhuǎn)化為出線性方程組求解的問(wèn)題,由此案例可以體現(xiàn)出線性方程組深刻的應(yīng)用內(nèi)涵。當(dāng)然其中還涉及模型的具體構(gòu)建,以及矛盾方程組修正的問(wèn)題,這與課程主題關(guān)系較遠(yuǎn),可不做說(shuō)明。案例2PageRank原理。在數(shù)學(xué)課中,線性代數(shù)是比較抽象的,因此格外需要以應(yīng)用性輔助教學(xué),讓學(xué)生明白抽象的理論如何運(yùn)用到具體案例中。比如《矩陣的特征值特征向量》一章中,我們可以將例題用數(shù)據(jù)庫(kù)搜索的模式給出。PageRank是Google創(chuàng)始人拉里•佩奇和謝爾蓋•布林于1997年開發(fā)出的一套用于網(wǎng)頁(yè)評(píng)級(jí)的系統(tǒng)。它區(qū)別于早期的網(wǎng)頁(yè)評(píng)價(jià)系統(tǒng)的基本思想在于不僅考慮網(wǎng)頁(yè)的入鏈個(gè)數(shù),還要考慮相關(guān)網(wǎng)頁(yè)的質(zhì)量因素。設(shè)共有n個(gè)網(wǎng)頁(yè),它們之間有一些互相鏈接,開始我們認(rèn)為它們具有相同的權(quán)重,基于下面兩條基本假設(shè),讓這些網(wǎng)頁(yè)之間重新分配權(quán)重,數(shù)量假設(shè):某網(wǎng)頁(yè)被其他網(wǎng)頁(yè)指向的入鏈個(gè)數(shù)越多,則這個(gè)網(wǎng)頁(yè)越重要。質(zhì)量假設(shè):重要的網(wǎng)頁(yè)所指向的網(wǎng)頁(yè)也會(huì)變得重要,也就是重要網(wǎng)頁(yè)通過(guò)鏈接傳遞給目標(biāo)網(wǎng)頁(yè)更大的權(quán)重。開始我們可以假設(shè)所有的網(wǎng)頁(yè)權(quán)重都是1,即權(quán)重向量為x=(1,1,…,1)T,設(shè)Google矩陣為A,以矩陣乘法重新分配網(wǎng)頁(yè)權(quán)重,經(jīng)過(guò)多次迭代最終達(dá)到穩(wěn)定值,可用y=limn→∞Anx表示。求穩(wěn)定向量y就相當(dāng)于求Ay=y的解,這樣的y就是矩陣A的特征向量。很多數(shù)學(xué)模型題目也都大量運(yùn)用線性代數(shù)的基本理論,例如2013年全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽題目B———碎紙片的拼接復(fù)原(原題略)就是線性代數(shù)以及線性規(guī)劃的理論的典型應(yīng)用。雖然課上不能展開細(xì)講,但是作為案例給學(xué)生簡(jiǎn)單進(jìn)行介紹,可以讓學(xué)生初步了解到數(shù)學(xué)并不是虛無(wú)飄渺的純理論科學(xué),它可以和實(shí)際問(wèn)題緊密結(jié)合,以數(shù)學(xué)模型為工具,用理論方法也可以解決現(xiàn)實(shí)問(wèn)題,通過(guò)這樣的教學(xué)模式,也讓學(xué)生的學(xué)習(xí)熱情以及學(xué)習(xí)動(dòng)力大大提升。還有很多實(shí)際的刑偵案例也和數(shù)學(xué)以及數(shù)學(xué)模型有千絲萬(wàn)縷的聯(lián)系。案例3Howland遺囑案。這是19世紀(jì)美國(guó)最著名的偽造案之一,是由Peirce父子兩位數(shù)學(xué)家的關(guān)鍵證詞而被定案的。案情主要情況如下,SylviaAnnHowland去世后,她的侄女HettyHowlandRob-inson出示了一份遺囑,聲明由她繼承全部遺產(chǎn),而且這份遺囑的第二頁(yè)特別聲明,在其之后的所立的任何遺囑均無(wú)效,兩頁(yè)都有死者的簽名。而遺產(chǎn)執(zhí)行人拒絕其要求,認(rèn)為第二頁(yè)系偽造,因而應(yīng)按照時(shí)間稍后的另一份遺囑執(zhí)行。一般認(rèn)定偽造簽名時(shí),是基于偽造樣本與可靠樣本之間的不同點(diǎn),但此案恰好相反,Peirce父子利用42個(gè)可靠樣本的統(tǒng)計(jì)分析,認(rèn)定第二頁(yè)簽名與第一頁(yè)過(guò)于相似,30處筆鋒向下的部分完全一致,而42個(gè)可靠樣本之間的筆鋒一致率僅有20%,Peirce認(rèn)定“這里出現(xiàn)的一致性必定來(lái)自于一種制造它的企圖?!币詫I(yè)的數(shù)學(xué)語(yǔ)言來(lái)講,這其實(shí)就是分析獨(dú)立性假設(shè)的合理性,通過(guò)假設(shè)檢驗(yàn),用一種“非參數(shù)”方法來(lái)分析這樣的數(shù)據(jù),最終證實(shí)“這個(gè)簽名是真的”這種假設(shè)是錯(cuò)誤的。

案例4死亡天使案。KristenGilbert,1967年11月13日生于美國(guó)馬薩諸塞州,自1989年在VAMC擔(dān)任護(hù)士,她經(jīng)常能夠在第一時(shí)間發(fā)現(xiàn)病人的危急情況,并且會(huì)在急救小組到來(lái)之前給病人注射一劑腎上腺素,有些時(shí)候能因此拯救病人的生命,因此被稱為“死亡天使”。1996年,同事的3名護(hù)士反映她在班期間病人的死亡率會(huì)比平時(shí)偏高,并根據(jù)一些其他情況,認(rèn)為她給病人注射過(guò)量藥物導(dǎo)致病情發(fā)作,以此來(lái)扮演搶救病人的英雄角色,據(jù)此對(duì)她提出指控,認(rèn)為她犯有多重謀殺罪。受醫(yī)院所托,馬薩諸塞大學(xué)的StephenGehl-bach對(duì)病房數(shù)據(jù)進(jìn)行分析,并于1998年向大陪審團(tuán)提交了經(jīng)由統(tǒng)計(jì)分析所得到的結(jié)果。Gehlbach的證詞基于假設(shè)檢驗(yàn),下表給出了18個(gè)月的病房統(tǒng)計(jì)數(shù)據(jù)。單用簡(jiǎn)單的除法進(jìn)行計(jì)算,已經(jīng)可以看出死亡天使在班期間死亡率確實(shí)高于平時(shí),但就嚴(yán)謹(jǐn)?shù)姆沙绦蚨?,這甚至還不足以提出指控,而統(tǒng)計(jì)學(xué)的作用正是要抓住數(shù)據(jù)背后的真相,判定這究竟是蓄意還是巧合。Gehlbach的計(jì)算結(jié)果如下,如果死亡天使沒有故意殺人的舉措,那么她遇到74例死亡當(dāng)中的40例的概率要小于一億分之一,幾乎是不可能的。本案最終沒有把計(jì)算結(jié)果作為直接定罪的證據(jù),但是Gehlbach的分析證實(shí)了醫(yī)院死亡率的增加不是偶然因素造成,這樣的計(jì)算結(jié)果說(shuō)明指控Gil-bert蓄意謀殺確有合理的基礎(chǔ)。結(jié)案后,Gehlbech與辯護(hù)方數(shù)學(xué)專家合作發(fā)表文章,對(duì)此案中的數(shù)學(xué)問(wèn)題進(jìn)行了進(jìn)一步的分析和總結(jié)。

4數(shù)學(xué)模型相對(duì)于現(xiàn)實(shí)的局限性

數(shù)學(xué)科學(xué)源于現(xiàn)實(shí),又反過(guò)來(lái)可以應(yīng)用于現(xiàn)實(shí),但是數(shù)學(xué)也不是萬(wàn)能的,它是公安工作強(qiáng)有力的輔助工具,但是絕對(duì)不能完全的代替公安工作,歷史上也曾有過(guò)因此出現(xiàn)紕漏的情況。案例5Rossmo的失誤。地理空間分析技術(shù)是指由系列犯罪地點(diǎn)的地理關(guān)系來(lái)推斷犯罪嫌疑人可能落腳點(diǎn)及行動(dòng)規(guī)律的偵查方法,現(xiàn)在已經(jīng)是非常成熟的刑偵方法,KimRossmo正是專門從事此方面研究的專家。真正使他名聲大震的正是他失誤的那一次,路易斯安那州的城南強(qiáng)奸案。Rossmo于1991年給出一個(gè)著名的數(shù)學(xué)模型用以確定犯罪嫌疑人所處的熱區(qū),Pij=k∑cn=(1Φ(|xi-xn|+|yi-yn|)f+(1-Φ)(Bg-f)(2B-|xi-xn|-|yi-yn|))g,并以其作為理論基礎(chǔ)編寫了名為Rigel的軟件用來(lái)尋找罪犯位置,獲得了一些成果。但是在1998年的城南強(qiáng)奸案中,Rossmo卻出師不利,他使用Rigel將搜索范圍縮小到大約1.25km2的范圍,區(qū)域內(nèi)共有十余名嫌疑犯被逐一排查,但是DNA檢測(cè)都與現(xiàn)場(chǎng)證據(jù)不符,案件失去了方向。這時(shí)出現(xiàn)了另一條線索,有人匿名檢舉臨近機(jī)構(gòu)的司法長(zhǎng)官,經(jīng)過(guò)偵查取證最后證實(shí)此人就是真正的罪犯,但是他的工作居住地點(diǎn)離計(jì)算出的熱區(qū)非常遠(yuǎn)。事后經(jīng)調(diào)查,發(fā)現(xiàn)罪犯剛剛搬家,以前居住地就在熱區(qū)當(dāng)中,這恰恰說(shuō)明模型沒有錯(cuò)誤,而僅僅是偵查上的失誤,Rossmo也因此案名聲大震,成為偵查界的知名人士。由這個(gè)案例可以看出,現(xiàn)實(shí)世界具有無(wú)窮的復(fù)雜性,而數(shù)學(xué)公式和數(shù)學(xué)模型是單純的,我們只能用數(shù)學(xué)模型來(lái)高度概括模擬現(xiàn)實(shí),卻不能用它來(lái)代替現(xiàn)實(shí)。如果遇到無(wú)法解決的問(wèn)題,并不是說(shuō)數(shù)學(xué)錯(cuò)了,而是我們的已知條件還不夠多,模擬還不夠精確,我們所要做的應(yīng)該是修正模型,尋找新的條件,這也正是數(shù)學(xué)的魅力所在。

5結(jié)語(yǔ)

直觀性和應(yīng)用性的內(nèi)涵相當(dāng)豐富,限于水平和篇幅,筆者只能從相當(dāng)粗淺的角度將其滲透到課堂當(dāng)中,對(duì)教學(xué)方法做出一些皮毛上的革新。但筆者也認(rèn)為在科學(xué)技術(shù)飛速發(fā)展的時(shí)代,在教學(xué)改革創(chuàng)新日新月異的今天,以直觀性和應(yīng)用性原則輔助數(shù)學(xué)教學(xué)還有極為廣闊的發(fā)展空間。筆者此文權(quán)當(dāng)拋磚引玉,希望相關(guān)學(xué)者與教育專家以及各位同事能夠?qū)?shù)學(xué)直觀和數(shù)學(xué)應(yīng)用再多一些關(guān)注和研究,以數(shù)學(xué)直觀揭示數(shù)學(xué)本質(zhì),以數(shù)學(xué)應(yīng)用推動(dòng)學(xué)科結(jié)合,給課堂教學(xué)注入新的理念和活力,在數(shù)學(xué)教學(xué)領(lǐng)域開辟一片新的天空。

作者:管濤 左萍 單位:中國(guó)人民公安大學(xué)網(wǎng)絡(luò)安全保衛(wèi)學(xué)院