公務(wù)員期刊網(wǎng) 論文中心 正文

高中數(shù)學(xué)三角函數(shù)中的教學(xué)方法

前言:想要寫出一篇引人入勝的文章?我們特意為您整理了高中數(shù)學(xué)三角函數(shù)中的教學(xué)方法范文,希望能給你帶來靈感和參考,敬請閱讀。

高中數(shù)學(xué)三角函數(shù)中的教學(xué)方法

摘要:三角函數(shù)是高中數(shù)學(xué)教學(xué)的重難點(diǎn)內(nèi)容,因其涉及的公式比較多,并且含有比較廣泛的知識(shí)面,所以,提升三角函數(shù)的教學(xué)質(zhì)量對于整個(gè)高中階段數(shù)學(xué)課程的教學(xué)工作的有效開展具有十分重要的意義。本文就以三角函數(shù)教學(xué)現(xiàn)狀為切入點(diǎn),分析提高三角函數(shù)教學(xué)質(zhì)量的措施。

關(guān)鍵詞:高中數(shù)學(xué);三角函數(shù);教學(xué)措施

一、三角函數(shù)的課堂教學(xué)目標(biāo)

在三角函數(shù)的教學(xué)過程中,教師為了提高其教學(xué)質(zhì)量,必須根據(jù)實(shí)際情況,對教學(xué)方法進(jìn)行創(chuàng)新。應(yīng)從培養(yǎng)學(xué)生的邏輯思維能力出發(fā)設(shè)計(jì)教學(xué)方案,圍繞高中數(shù)學(xué)課標(biāo)要求,抓住三角函數(shù)的教學(xué)主線,重點(diǎn)考慮如何讓學(xué)生掌握任意角的正弦、余弦函數(shù)的定義,以及三角函數(shù)二倍角公式的有序轉(zhuǎn)換等內(nèi)容;使學(xué)生能夠在此基礎(chǔ)上,深刻理解任意角的三角函數(shù)不同的定義方法,充分掌握并能初步運(yùn)用公式,探討任意角的三角函數(shù)值的求法,最終得到任意角三角函數(shù)的定義;通過三角函數(shù)的幾何表示,使學(xué)生進(jìn)一步加深對數(shù)形結(jié)合的理解,拓展思維空間,培養(yǎng)學(xué)生的識(shí)別辨析能力,讓學(xué)生養(yǎng)成嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,從中感悟數(shù)學(xué)概念的嚴(yán)謹(jǐn)性與科學(xué)性,養(yǎng)成主動(dòng)思考數(shù)學(xué)問題的良好習(xí)慣。

二、三角函數(shù)的課堂教學(xué)應(yīng)用

(一)加深三角函數(shù)公式、概念記憶

數(shù)學(xué)公式和概念蘊(yùn)藏了豐富的數(shù)學(xué)思想,是數(shù)學(xué)教學(xué)中的重要依據(jù),更是學(xué)生學(xué)習(xí)數(shù)學(xué)理論的基礎(chǔ)。但是由于三角函數(shù)的計(jì)算公式和概念較為抽象、繁瑣,學(xué)生容易出現(xiàn)記得不牢或記憶混淆,導(dǎo)致在做題過程中發(fā)生因做題步驟較多而出現(xiàn)計(jì)算失誤的問題。所以,在三角函數(shù)的學(xué)習(xí)過程中,需要教師運(yùn)用有效的教學(xué)方法從中加以引導(dǎo),幫助學(xué)生能夠更加簡便的、透徹的理解概念及公式內(nèi)容。如:為了幫助學(xué)生理解三角函數(shù)的概念及公式,教師可以采用圖像法,將抽象的三角函數(shù)概念具體化。在三角函數(shù)的課堂教學(xué)中,可根據(jù)學(xué)生已有的知識(shí)儲(chǔ)備,將新舊知識(shí)融合,在現(xiàn)有的基礎(chǔ)上進(jìn)行課堂教學(xué)設(shè)計(jì),引導(dǎo)學(xué)生能夠靈活的運(yùn)用公式變形簡化計(jì)算步驟,學(xué)會(huì)觀察公式間的內(nèi)在聯(lián)系及特點(diǎn),懂得在做題過程中,發(fā)掘其中差異,尋找聯(lián)系,熟悉公式的客觀轉(zhuǎn)化,從而提高課堂教學(xué)實(shí)效。

(二)拓寬教學(xué)范圍,提升學(xué)生學(xué)習(xí)質(zhì)量

指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)和三角函數(shù)等都是高中數(shù)學(xué)函數(shù)的學(xué)習(xí)內(nèi)容,它們是高中數(shù)學(xué)學(xué)習(xí)中的重要組成部分。雖然高中數(shù)學(xué)要學(xué)習(xí)的函數(shù)類型眾多,而且是知識(shí)中重難點(diǎn),但是,它們之間都存在著相互的聯(lián)系。因此,教師在進(jìn)行三角函數(shù)的課堂教學(xué)時(shí),應(yīng)根據(jù)總體函數(shù)的知識(shí)概況,摸索出這些函數(shù)之間的聯(lián)系,使學(xué)生在教師的引領(lǐng)下摸索出三角函數(shù)與其他非三角函數(shù)的相似之處,以及探討出它們的不同之處,幫助學(xué)生組織清晰的思維能力,理清分析思路,拓寬學(xué)生學(xué)習(xí)范圍,提高學(xué)生的學(xué)習(xí)質(zhì)量。

(三)發(fā)展學(xué)生解題思路,提高三角函數(shù)解題能力

通過以往的教學(xué)經(jīng)驗(yàn)可以得知,同一道數(shù)學(xué)題可以有多種解答思路,需要學(xué)生從多方面進(jìn)行分析,熟練掌握解題技巧與解題規(guī)律,然后確定解題方法。因此,在進(jìn)行課堂教學(xué)時(shí),教師應(yīng)該尊重學(xué)生的學(xué)習(xí)主體地位,引導(dǎo)學(xué)生對題目進(jìn)行探索,從而培養(yǎng)學(xué)生的獨(dú)立思考能力。讓學(xué)生通過對比做到舉一反三,學(xué)會(huì)發(fā)掘不同的解題方式,熟練地掌握各類解題方法,從中找出最適合自己的解題思路,并以最快的速度進(jìn)行解答。例如:已知tanα=3,求cosα-sinαcosα+sinα,教師可以引導(dǎo)學(xué)生對題目進(jìn)行多方面分析,幫助學(xué)生拓寬解題思路,讓學(xué)生盡情發(fā)揮數(shù)學(xué)思維,從中找到多種解題方法,并進(jìn)行比較分析。第一種方式:因?yàn)閠anα>0,所以就可以判斷α在第一象限或第三象限,然后分別針對兩種情況求出cosα和sinα的值,最后得出答案。第二種方式:由于tanα=3,而tanα=sinαcosα,可以得出sinα=3cosα,把這個(gè)變換的等式代入原式中間進(jìn)行約分,可以得出-12的結(jié)果。第三種方式:通過函數(shù)轉(zhuǎn)化公式,就可以得出cosα-sinαcosα+sinα=1+tanα1-tanα=-12的結(jié)果。對于以上的三種解法,后兩種可能更加的簡單直接,能更快地算出答案。教師通過讓學(xué)生進(jìn)行多向思維,分析解題方法的教學(xué),不管是學(xué)生在今后的考試中或者是參加競賽時(shí)都能夠以最快的速度、最省事的方法進(jìn)行題目解答。幫助學(xué)生拓寬了解題思路,開發(fā)數(shù)學(xué)思維,讓學(xué)生以自己的思維方式做出最快、最正確的解答。

三、鼓勵(lì)學(xué)生參加競賽,提高數(shù)學(xué)應(yīng)用能力

近年來,高中數(shù)學(xué)競賽不斷增加,有越來越多的學(xué)生愿意通過參加競賽鞏固自己的數(shù)學(xué)基礎(chǔ),提高自己實(shí)際的應(yīng)用能力,活躍自己的數(shù)學(xué)思維。高中數(shù)學(xué)競賽不同于平時(shí)的考試,它是對學(xué)生能力的提升,也是對學(xué)生學(xué)習(xí)的肯定。由于數(shù)學(xué)競賽的主要參與對象是廣大學(xué)子,其中尤以高中學(xué)生居多,它的目的主要是為了挖掘和培養(yǎng)更多的綜合性數(shù)學(xué)人才;推動(dòng)課外活動(dòng)開展;提高學(xué)生數(shù)學(xué)興趣;促進(jìn)中學(xué)數(shù)學(xué)教學(xué)改革;為國際數(shù)學(xué)奧林匹克做準(zhǔn)備。因此,競賽命題通常都會(huì)突破課本的限制,那么教師在實(shí)際的教學(xué)中應(yīng)盡量做到將視角放開,最大化的運(yùn)用新奇的題型,以此來幫助提高學(xué)生的抽象思維、想象思維以及分析邏輯思維。應(yīng)多多鼓勵(lì)學(xué)生,以積極向上精神,樂觀大膽的態(tài)度,積極踴躍地參加數(shù)學(xué)競賽,以此來提升自己的數(shù)學(xué)綜合應(yīng)用能力。

四、結(jié)語

數(shù)學(xué)作為高中階段一門重要學(xué)科,對學(xué)生的學(xué)習(xí)成績有著極大的影響,對于輔助其他課程的學(xué)習(xí)也起著積極的作用。三角函數(shù)作為高中數(shù)學(xué)中的重要學(xué)習(xí)內(nèi)容,應(yīng)引起教師與學(xué)生的特別關(guān)注,在平時(shí)的教學(xué)過程中,教師應(yīng)不斷總結(jié)經(jīng)驗(yàn),完善教學(xué)方法,才能使學(xué)生更加充分地掌握到三角函數(shù)的定義、理論以及相關(guān)的數(shù)學(xué)思維方式,從而提升學(xué)生數(shù)學(xué)的創(chuàng)新性思維以及綜合運(yùn)用能力,同時(shí)也使得教師的教學(xué)質(zhì)量能夠有效地提高,為將學(xué)生培養(yǎng)成為綜合型高素質(zhì)人才奠定基礎(chǔ)。

參考文獻(xiàn):

[1]鄧靖.巧妙利用化歸法解決高中數(shù)學(xué)三角函數(shù)題[J].讀寫算:教師版,2015(41).

[2]王成.整體把握高中數(shù)學(xué)新課程中的三角函數(shù)與三角[J].新課程導(dǎo)學(xué),2016(35).

[3]潘菊平.探討高中數(shù)學(xué)三角函數(shù)教學(xué)[J].中學(xué)教學(xué)參考,2014(32).

作者:張恒麗 單位:蕪湖縣第一中學(xué)