公務(wù)員期刊網(wǎng) 精選范文 大學(xué)數(shù)學(xué)思維訓(xùn)練范文

大學(xué)數(shù)學(xué)思維訓(xùn)練精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的大學(xué)數(shù)學(xué)思維訓(xùn)練主題范文,僅供參考,歡迎閱讀并收藏。

大學(xué)數(shù)學(xué)思維訓(xùn)練

第1篇:大學(xué)數(shù)學(xué)思維訓(xùn)練范文

1.甲、乙、丙、丁四個(gè)人進(jìn)行羽毛球比賽,實(shí)行單循環(huán)賽制(每?jī)扇碎g都要進(jìn)行一場(chǎng)比賽),勝一場(chǎng)得3分,平一場(chǎng)得1分,負(fù)一場(chǎng)不得分。已知比賽結(jié)束后甲勝3場(chǎng)、乙勝2場(chǎng),則以下哪一項(xiàng)不可能是丙的得分?

A.3

B.2

C.1

D.0

2、王老師到商店采購(gòu)體育用品,籃球和足球共計(jì)購(gòu)買80個(gè),已知籃球80元/個(gè),足球70元/個(gè)。由于購(gòu)買數(shù)量較多,商店給予優(yōu)惠:籃球滿四贈(zèng)一,足球滿五贈(zèng)一。王老師在支付時(shí)發(fā)現(xiàn)籃球和足球數(shù)量恰好分別為5的倍數(shù)和6的倍數(shù),最終只支付了65個(gè)球的費(fèi)用。那么商店實(shí)際給了王老師多少優(yōu)惠?

A.1100元

B.1150元

C.1160元

D.1240元

3、某單位有甲乙兩個(gè)科室,其中甲科室有3名男員工、1名女員工,乙科室有1名男員工、4名女員工?,F(xiàn)要從該單位抽調(diào)3人駐村扶貧,要求抽調(diào)人員不能來(lái)自同一科室且有男有女,則不同的選擇方法有多少種:

A.81

B.70

C.61

D.54

4、試著計(jì)算下列各題,你發(fā)現(xiàn)了什么規(guī)律?

(1)26×11

(2)57×11

(3)253×11

(4)467×11

5、很快算出下面各題的結(jié)果。

(1)12×11

(2)34×11

(3)25×11

(4)11×44

(5)48×11

(6)65×11

(7)11×75

(8)87×11

6、下面的乘法計(jì)算有規(guī)律嗎?

(1)25×24

(2)21×25

(3)25×427

(4)1998×25

7、速算。

(1)12×25

(2)34×25

(3)25×121

(4)25×46

8.張三、李四、王五三人參加了一次模擬練習(xí),三人均完成了所有題目。已知張三答對(duì)32題,李四答對(duì)30題,王五答對(duì)22題,其中張三、李四均答錯(cuò)的有3題。若王五答錯(cuò)題的數(shù)量恰是張三、李四答錯(cuò)題的數(shù)量之和,則張三、李四均答對(duì)的題目有多少道:

A.30

B.25

C.19

D.22

9、某影院對(duì)國(guó)慶期間看過(guò)1到3場(chǎng)電影的55名消費(fèi)者進(jìn)行調(diào)查,統(tǒng)計(jì)發(fā)現(xiàn)共觀影達(dá)100人次。其中觀影3次的人數(shù)等于觀影2次的男生人數(shù),是觀影2次的女生人數(shù)的。若從這些消費(fèi)者中隨機(jī)挑選一人,其只看過(guò)1場(chǎng)電影的概率為:

A.

B.

C.

D.

10、一批藥材一月份按照10%的期望利潤(rùn)率賣出了總進(jìn)貨量的70%,二月份將利潤(rùn)率提高10個(gè)百分點(diǎn)后,賣出了總進(jìn)貨量的20%。三月份在現(xiàn)價(jià)基礎(chǔ)上打折處理掉了剩余藥材。最終全部藥材獲利10%。則三月份藥材打幾折出售?

A.六六折

B.七折

C.七五折

D.九折

11、甲乙丙三人早上9點(diǎn)同時(shí)從A地前往B地,甲每小時(shí)比乙多走10千米,比丙多走12千米。甲出發(fā)4小時(shí)后到達(dá)B地,然后立刻返回,在距B地30千米處與乙相遇。則甲與丙相遇的時(shí)間為:

A.14:00

B.14:30

C.15:40

D.16:10

12、一項(xiàng)工程由甲隊(duì)單獨(dú)完成需45天,由甲乙兩隊(duì)合作需20天?,F(xiàn)由兩隊(duì)合作,開(kāi)工一段時(shí)間后甲隊(duì)離開(kāi)了5天,在甲歸隊(duì)工作一天后,乙隊(duì)因其他緊急工程被調(diào)走。若該工程共花了30天完成,則甲在開(kāi)工后多少天中途離開(kāi)?

A.13

B.12

C.11

D.10

13、某海域一艘海上執(zhí)法船沿著東偏北30度方向追趕同方向逃跑的一艘非法漁船。上午9點(diǎn)30分,該漁船改變逃跑方向,向著正北方向以16節(jié)(1節(jié)=1海里/小時(shí))的速度逃跑,執(zhí)法船立刻做出反應(yīng),沿著北偏東30度方向勻速追趕,上午11點(diǎn)整正好在某一點(diǎn)追上。若執(zhí)法船和漁船的速度都不變,該漁船沒(méi)有改變方向繼續(xù)沿著東偏北30度方向逃跑,則執(zhí)法船最快需要多少小時(shí)才能追上漁船?

A.5

B.4

C.2

D.3

14、某蛋糕店的手工蛋糕保質(zhì)期只有1天。早上該店制作了100個(gè)蛋糕,預(yù)期獲利為成本的100%,按定價(jià)銷售了60個(gè);下午三點(diǎn)后打8折銷售了10個(gè);晚上八點(diǎn)后在下午的價(jià)格基礎(chǔ)上,開(kāi)展買一送一活動(dòng);最終剩下10個(gè)蛋糕未賣出,由店員分食。若這一批蛋糕共獲得利潤(rùn)780元,則單個(gè)蛋糕的成本為(

)元。

A、7.5

B、7.8

C、10

D、15

15、因臺(tái)風(fēng)將至,某抗洪指揮部邀請(qǐng)了兩支施工隊(duì)對(duì)東西兩面堤壩進(jìn)行維修加固,甲施工隊(duì)負(fù)責(zé)東面,乙施工隊(duì)負(fù)責(zé)西面,3天工期后,東面工程完成,西面工程完成一半。后來(lái)為了追趕進(jìn)度,乙施工隊(duì)完成西面工程后幫助甲施工隊(duì)共同加固?hào)|面工程,并且甲乙施工隊(duì)都在原工作效率基礎(chǔ)上提升20%,最終正好7天完工。請(qǐng)問(wèn)甲乙兩隊(duì)原來(lái)工作效率之比是多少?

A.2:3

B.3:2

C.3:4

D.4:3

16、某交警中隊(duì)制定了新的值班制度,規(guī)定中隊(duì)民警每隔3天值班一次,遇到周四值班休息3天,周五值班休息2天,其余時(shí)間(包含周六、周日)值班休息1天,不值班也不休息的日子就正常上班。假設(shè)中隊(duì)民警小劉在2018年2月1日(周四)值班,問(wèn)小劉在2月共休息了多少天?

A.15

B.8

C.9

D.10

17、現(xiàn)有兩種不同濃度的酒精溶液A、B,已知A溶液的酒精濃度是B的2倍,若分別將A倒出、B倒出一半后,再將A、B剩余酒精溶液混合,得到新溶液的濃度為A的70%,則原來(lái)A和B溶液的質(zhì)量之比為:

A.1:2

B.2:3

C.1:1

D.9:8

18、從0~9這十個(gè)數(shù)字中任意選擇三個(gè)數(shù)組成一個(gè)三位數(shù),要求這個(gè)三位數(shù)是一個(gè)偶數(shù),且百位、十位和個(gè)位上的數(shù)字依次遞增或遞減,則共有多少種不同的選擇方式?

A.83

B.91

C.98

D.104

19、將一個(gè)球體切成完全相同的四塊,每一塊的表面積均為18π平方厘米,請(qǐng)問(wèn)這個(gè)球體積是多少?

A.60π

B.48π

C.36π

D.24π

20、某大學(xué)有3個(gè)社團(tuán)招新,某新生寢室4人共同前往報(bào)名,每個(gè)人都同時(shí)報(bào)名了3個(gè)社團(tuán)。最后這3個(gè)社團(tuán)都只招收了1個(gè)人,如果4名同學(xué)在各個(gè)社團(tuán)中成功招錄的概率相等,問(wèn)恰好這3個(gè)社團(tuán)招錄的新生各不相同的概率為多少(3個(gè)社團(tuán)可以同時(shí)招錄同一個(gè)人)?

A.

B.

第2篇:大學(xué)數(shù)學(xué)思維訓(xùn)練范文

關(guān)鍵詞:初中;數(shù)學(xué)教學(xué);創(chuàng)新思維;探討

一、引言

知識(shí)經(jīng)濟(jì)已現(xiàn)端倪,也是今后發(fā)展趨勢(shì)。民族的進(jìn)步需要?jiǎng)?chuàng)新人才的貢獻(xiàn),國(guó)家綜合國(guó)力的提升需要?jiǎng)?chuàng)新人才。同志曾在兩院院士大會(huì)上的講話中明確指出:“在尊重教師主導(dǎo)作用的同時(shí),更加注重培育學(xué)生的主動(dòng)精神,鼓勵(lì)學(xué)生的創(chuàng)造性思維?!碑?dāng)前積極提倡的素質(zhì)教育,培養(yǎng)高素質(zhì)人才,已得到廣大群眾及相關(guān)部門的共識(shí)。而所謂的高素質(zhì)人才,不是只光光具有高學(xué)歷,更需要?jiǎng)?chuàng)新精神和能力,高素質(zhì)人才的核心能力就是創(chuàng)造性思維能力。初中是人生接受學(xué)校教育的中轉(zhuǎn)站,該時(shí)期培養(yǎng)的創(chuàng)新性思維能夠?yàn)榻窈蟮拇髮W(xué)或職業(yè)教育深造提供堅(jiān)強(qiáng)有力的后盾。當(dāng)前初中數(shù)學(xué)教育存在著不少問(wèn)題,比如學(xué)生在學(xué)習(xí)中存在死記硬背、對(duì)公式靈活運(yùn)用的能力不強(qiáng)、刻板僵化、唯書(shū)唯師等情況,因此有必要加強(qiáng)創(chuàng)新思維的培養(yǎng),在數(shù)學(xué)教學(xué)環(huán)節(jié)中切實(shí)落實(shí)對(duì)學(xué)生創(chuàng)新思維的培養(yǎng)。

二、數(shù)學(xué)創(chuàng)新性思維的概念及特征

探討在初中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生創(chuàng)新性思維,就有必要先了解數(shù)學(xué)創(chuàng)造性思維的概念及特征:

(一)數(shù)學(xué)創(chuàng)新性思維的概念

所謂創(chuàng)新性思維是指有創(chuàng)見(jiàn)性的思維,人們通過(guò)這種思維不僅可以揭示出事物的本質(zhì)及其內(nèi)在聯(lián)系,而且還能在此基礎(chǔ)上產(chǎn)生新穎的、獨(dú)創(chuàng)的、有實(shí)際社會(huì)意義的思維。數(shù)學(xué)創(chuàng)新性思維是指能主動(dòng)的、獨(dú)創(chuàng)地提出新的觀點(diǎn)與方法,解決新問(wèn)題的一種思維品質(zhì),它具有獨(dú)創(chuàng)性和新穎性。而學(xué)生數(shù)學(xué)創(chuàng)新性思維是個(gè)體在強(qiáng)烈的創(chuàng)新意識(shí)指導(dǎo)下,把頭腦中已有的知識(shí)信息重新組合,產(chǎn)生具有一定意義的新發(fā)現(xiàn)、新設(shè)想及與眾不同的方法。學(xué)生的創(chuàng)造性思維不一定具有社會(huì)價(jià)值,但對(duì)學(xué)生個(gè)人創(chuàng)造性思維的培養(yǎng)具有非常重要的意義,因此,在教學(xué)過(guò)程中,必須有意識(shí)地培養(yǎng)學(xué)生的創(chuàng)造性思維,使學(xué)生形成良好的思維品質(zhì)。

(二)數(shù)學(xué)創(chuàng)新性思維的特征

數(shù)學(xué)創(chuàng)新性思維發(fā)揮著大腦的整體工作特點(diǎn)及下意識(shí)活動(dòng)能力,完整地把握真數(shù)與形的關(guān)聯(lián),數(shù)學(xué)創(chuàng)新性思維不僅具有創(chuàng)新的特點(diǎn)而且具有數(shù)學(xué)思維的特點(diǎn),是兩者的有機(jī)結(jié)合,具有的相關(guān)特征如下闡述所示:數(shù)學(xué)創(chuàng)新性思維具有創(chuàng)建性、新穎性的標(biāo)志;積極地創(chuàng)造性想象與現(xiàn)實(shí)統(tǒng)一是數(shù)學(xué)創(chuàng)新性思維的重要環(huán)節(jié);發(fā)散思維與邏輯思維相結(jié)合是數(shù)學(xué)創(chuàng)新性思維的基本模式;專注與靈感是創(chuàng)新性思維的重要特點(diǎn)。

三、在數(shù)學(xué)教學(xué)中強(qiáng)化思維訓(xùn)練以培養(yǎng)學(xué)生創(chuàng)新思維意識(shí)

在初中數(shù)學(xué)教學(xué)中,培養(yǎng)學(xué)生的創(chuàng)新思維能力,按照不同的教學(xué)內(nèi)容,采用不同的教學(xué)方式,以針對(duì)性提高學(xué)生創(chuàng)新意識(shí)的能力。

(一)適當(dāng)時(shí)機(jī)進(jìn)行統(tǒng)攝思維訓(xùn)練以培養(yǎng)學(xué)生的創(chuàng)新性思維

數(shù)學(xué)內(nèi)容教學(xué)到一定階段后,有必要進(jìn)行統(tǒng)攝思維訓(xùn)練,以增強(qiáng)學(xué)生的創(chuàng)新思維意識(shí)及能力。統(tǒng)攝訓(xùn)練是對(duì)學(xué)過(guò)的數(shù)學(xué)相關(guān)的概念、定理、單元章節(jié)等進(jìn)行系統(tǒng)的復(fù)習(xí),并且進(jìn)行技巧性的總結(jié)歸納,掌握知識(shí)的內(nèi)在聯(lián)系,理順知識(shí)的脈絡(luò),編織良好的知識(shí)網(wǎng)絡(luò)。采用統(tǒng)攝培訓(xùn)教學(xué)方法主要是為學(xué)生創(chuàng)新性思維發(fā)揮打造良好的基礎(chǔ)。

(二)恰當(dāng)?shù)剡M(jìn)行批判性思維以培養(yǎng)學(xué)生的創(chuàng)新意識(shí)

批判性思維是學(xué)生對(duì)自我解題思路的冷靜分析,對(duì)解題結(jié)果的重新審核。在數(shù)學(xué)解題中采用批判性思維就能夠不斷對(duì)解題的思路及結(jié)果進(jìn)行完善,不斷找到新方法、新思路。批判性思維不僅僅是對(duì)學(xué)生自己解題思路的審核,而且能夠科學(xué)的分析教師教學(xué)的一切,打破唯書(shū)唯師論,學(xué)生經(jīng)過(guò)自己對(duì)問(wèn)題或者解題思路進(jìn)行系統(tǒng)的考量,更能夠進(jìn)一步的接受所學(xué)知識(shí)。為了能夠讓學(xué)生有不少機(jī)會(huì)進(jìn)行批判性思維鍛煉,在數(shù)學(xué)教學(xué)過(guò)程中,教師可以有意識(shí)地適當(dāng)出一些改錯(cuò)題或判斷題等題型來(lái)發(fā)展學(xué)生思維的批判性,加強(qiáng)創(chuàng)新意識(shí)的培養(yǎng)。

(三)不時(shí)地進(jìn)行直覺(jué)思維訓(xùn)練以培養(yǎng)學(xué)生的創(chuàng)新意識(shí)

數(shù)學(xué)直覺(jué)思維是建立在對(duì)客觀數(shù)學(xué)知識(shí)掌握及熟悉的基礎(chǔ)上發(fā)生的,是平時(shí)數(shù)學(xué)知識(shí)的積累與沉淀的一種良好反應(yīng),表現(xiàn)在數(shù)學(xué)問(wèn)題上就是沒(méi)有嚴(yán)格的邏輯推理、沒(méi)有進(jìn)行理論推導(dǎo)時(shí)就能夠感覺(jué)到問(wèn)題的結(jié)論。直覺(jué)思維越過(guò)中間環(huán)節(jié),不像邏輯思維要經(jīng)過(guò)嚴(yán)格的論證與推理等中間環(huán)節(jié),就像英語(yǔ)學(xué)習(xí)中所謂的“語(yǔ)感”。在數(shù)學(xué)考試中,需要強(qiáng)烈的這種直覺(jué)思維,因?yàn)橛兄己玫闹庇X(jué)思維能夠形成良好的解題思路,不但準(zhǔn)確率高,而且節(jié)約考試寶貴的時(shí)間,體現(xiàn)解題的高效率。因此在教學(xué)中,首先,教師就應(yīng)該不時(shí)地對(duì)學(xué)生進(jìn)行示范,讓學(xué)生體會(huì)到直覺(jué)思維的魅力;其次,教師在教學(xué)中多設(shè)置直覺(jué)思維的題目,在學(xué)生毫無(wú)準(zhǔn)備下突問(wèn)學(xué)生用直覺(jué)思維解決問(wèn)題;最后,要充分運(yùn)用啟發(fā)式教學(xué),有效地發(fā)展學(xué)生直覺(jué)思維。

(四)針對(duì)性地進(jìn)行逆向思維訓(xùn)練以培養(yǎng)學(xué)生的創(chuàng)新意識(shí)

在兵法上強(qiáng)調(diào)迂回,其實(shí)生活中很多事情亦如此。當(dāng)一個(gè)問(wèn)題在正面難以找到突破口時(shí),就應(yīng)該從其他的角度下手,沖破思維定視,間接求解,利用正難則反的思維。數(shù)學(xué)中存在著不少的證明題,就可以利用這一思維,在數(shù)學(xué)教學(xué)中教師就應(yīng)該有針對(duì)性的設(shè)置逆向思維的題目,引導(dǎo)學(xué)生靈活地轉(zhuǎn)換觀察和分析數(shù)學(xué)問(wèn)題的角度,讓學(xué)生充分看到逆向思維的功能。

(五)有機(jī)地進(jìn)行集中思維與發(fā)散思維訓(xùn)練以提高學(xué)生的創(chuàng)新意識(shí)

在數(shù)學(xué)教學(xué)中進(jìn)行集中與發(fā)散思維訓(xùn)練,針對(duì)某個(gè)知識(shí)點(diǎn)或者是某個(gè)問(wèn)題進(jìn)行發(fā)散,對(duì)于散亂的知識(shí)點(diǎn)進(jìn)行集中,總結(jié)。創(chuàng)新性思維基本成分包括集中性與發(fā)散性思維,所謂集中性思維就是利用已有的信息按照一般的單一模式,得出一個(gè)正確的答案。發(fā)散性思維是根據(jù)某個(gè)知識(shí)點(diǎn)沿著不同的方向去思考、探索,聯(lián)想到更多的解決問(wèn)題方案,這些方案不一定都具有價(jià)值,需要評(píng)判、篩選、提煉、升華。集中性思維是發(fā)散思維的起點(diǎn)和歸宿,兩者相輔相成,要培養(yǎng)學(xué)生的創(chuàng)新意識(shí)就不能夠單單從集中性思維或者發(fā)散性思維進(jìn)行培養(yǎng),而應(yīng)兩者進(jìn)行有機(jī)地結(jié)合,才能發(fā)揮效用。

參考文獻(xiàn):

[1]陳奇峰.試談在數(shù)學(xué)教學(xué)中學(xué)生創(chuàng)造性思維的培養(yǎng)[J].科技資訊,2010(03).

[2]李曉龍.也談數(shù)學(xué)教學(xué)中學(xué)生創(chuàng)新意識(shí)和創(chuàng)新能力的培養(yǎng)[J].科教園地,2009.

[3] 陳實(shí).創(chuàng)新思維——數(shù)學(xué)教育的核心[N];學(xué)知報(bào);2011年.

第3篇:大學(xué)數(shù)學(xué)思維訓(xùn)練范文

關(guān)鍵詞 初中數(shù)學(xué)教學(xué) 逆向思維 能力培養(yǎng)

中圖分類號(hào):G633.6 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1002-7661(2017)10-0038-02

逆向思維是相對(duì)于習(xí)慣思維的另一種思維方式,它的基本特點(diǎn)是:從已有思路的反方向去思考問(wèn)題。逆向思維與順向思維是思維訓(xùn)練的主要的基本形式,也是思維形式上的一對(duì)矛盾。在分析、解答問(wèn)題時(shí),順向思維是按照條件出現(xiàn)的先后順序進(jìn)行思考的;而逆向思維是不依照題目?jī)?nèi)條件出現(xiàn)的先后順序,而是從反方向(或從結(jié)果)出發(fā),進(jìn)行逆轉(zhuǎn)推理的一種思維方法。初中數(shù)學(xué)教師正確地進(jìn)行逆向思維,對(duì)學(xué)生開(kāi)拓解題思路,促進(jìn)思維的靈活性,都會(huì)起到積極的作用。

一、加強(qiáng)定義、定理、公式、法則的互逆性教學(xué)

(一)在數(shù)學(xué)解題中“定義法”是一N比較常見(jiàn)的方法,但定義的逆運(yùn)用容易被學(xué)生忽視,只要我們重視定義的逆運(yùn)用,進(jìn)行逆向思考,就會(huì)達(dá)到使問(wèn)題解答簡(jiǎn)捷的目的。因此,在概念教學(xué)中,應(yīng)明確作為一個(gè)數(shù)學(xué)定義的命題,其逆命題總是成立的,所以從一開(kāi)始就要貫穿雙向思維訓(xùn)練。

由此可見(jiàn),若能引導(dǎo)學(xué)生學(xué)會(huì)用逆向思維解題,不但可減少運(yùn)算量,優(yōu)化解題過(guò)程,提高解題能力,而且會(huì)讓學(xué)生感到成功的喜悅,從而激發(fā)了學(xué)生逆向思維的興趣。

參考文獻(xiàn):

[1]殷群.論數(shù)學(xué)解題反思及其能力培養(yǎng)[D].南京師范大學(xué),2004.

[2]周莉敏.“砸缸救人”的啟示――談逆向思維解題[J].青蘋(píng)果,2004,(10).

第4篇:大學(xué)數(shù)學(xué)思維訓(xùn)練范文

【關(guān)鍵詞】初中數(shù)學(xué) 新課改 自主學(xué)習(xí) 創(chuàng)新教育

【中圖分類號(hào)】G633.6 【文獻(xiàn)標(biāo)識(shí)碼】A 【文章編號(hào)】2095-3089(2012)10-0138-01

數(shù)學(xué)是一門基礎(chǔ)性學(xué)科,學(xué)習(xí)數(shù)學(xué)對(duì)于培養(yǎng)學(xué)生的思維能力大有裨益。初中學(xué)生正值求知欲旺盛的年齡,加強(qiáng)學(xué)生的數(shù)學(xué)素養(yǎng)的訓(xùn)練,對(duì)于學(xué)習(xí)新知識(shí)將有重要的促進(jìn)作用。新一輪教育改革的實(shí)施,如何在初中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的自主創(chuàng)新能力,不僅是教育改革的要求,同樣也是對(duì)每一個(gè)教育者的希冀。中學(xué)階段的作為一個(gè)人重要的學(xué)習(xí)時(shí)期,抓住這個(gè)時(shí)期,用新的教法來(lái)啟發(fā)學(xué)生的思維,用新的理念來(lái)啟迪學(xué)生的智慧,數(shù)學(xué)教學(xué)創(chuàng)新之路,任重而道遠(yuǎn)。

一、如何認(rèn)識(shí)創(chuàng)新思維能力

多年的教學(xué)形成了自己的教學(xué)經(jīng)驗(yàn),但并不是每一項(xiàng)經(jīng)驗(yàn)都是值得肯定的。同樣的知識(shí)有多種不同的教學(xué)方法,但不一定每一種教法都能實(shí)現(xiàn)教學(xué)的目的。知識(shí)是無(wú)止境的,學(xué)習(xí)是沒(méi)有盡頭的,同樣教法也是無(wú)窮盡的。初中數(shù)學(xué)知識(shí)的課堂教學(xué),不能僅僅停留于知識(shí)的灌輸,而應(yīng)該打破過(guò)去的固化教學(xué)模式,結(jié)合學(xué)生的思維現(xiàn)狀,倡導(dǎo)學(xué)生自主的去探索新的方法,發(fā)散學(xué)生的思維,從一般到特殊,再?gòu)奶厥獾揭话?,既要進(jìn)行分析的訓(xùn)練,又要加強(qiáng)綜合的概括,思維能力的培養(yǎng)就是在這樣的反復(fù)中自然習(xí)得。

簡(jiǎn)單的來(lái)講,創(chuàng)新性思維就是不走尋常路,不從直接原因出發(fā),通過(guò)猜測(cè)、想象或聯(lián)想的方式尋求新的解決問(wèn)題的方法。所謂創(chuàng)新就是要打破常規(guī)習(xí)慣的思維束縛,哪怕的錯(cuò)誤的方法,至少也是積極的思維。當(dāng)然,創(chuàng)造性思維不能脫離事實(shí)依據(jù),它要遵循思維的活動(dòng)規(guī)律,只是走了另外一條道來(lái)到了你的目的地。

1)創(chuàng)造性思維是建立在邏輯思維和直覺(jué)思維的基礎(chǔ)之上,邏輯思維強(qiáng)調(diào)對(duì)事物的分析和推導(dǎo),直覺(jué)思維提倡的依賴于瞬間的靈感和頓悟,它們都是解決問(wèn)題的一種思維方法,只是邏輯思維側(cè)重于理性的分析和綜合的推演,注重邏輯順序和過(guò)程,而直覺(jué)思維則側(cè)重于感性的思考,兩者是既對(duì)立又統(tǒng)一,都是形成創(chuàng)造性思維的基礎(chǔ)和前提。

2)集中思維和發(fā)散思維是形成創(chuàng)造性思維的條件,有人認(rèn)為,創(chuàng)造性思維就是發(fā)散性思維,發(fā)散思維確實(shí)是讓學(xué)生提出很多不同的解決問(wèn)題的方法,但發(fā)散并非全是創(chuàng)造性思維,而集中思維雖然側(cè)重于某一個(gè)方向或某一個(gè)點(diǎn),在創(chuàng)造性思維過(guò)程中,往往某一個(gè)點(diǎn)就是創(chuàng)新的源泉,所以,集中思維注重單點(diǎn)效應(yīng),而發(fā)散思維則側(cè)重于多角度、多方面的思考問(wèn)題,兩者都是進(jìn)行創(chuàng)新性思維選擇的方法而已。

二、初中數(shù)學(xué)培養(yǎng)學(xué)生創(chuàng)新思維方法的重要性

21世紀(jì)的今天,在教育界,越來(lái)越多的教育理論不斷涌現(xiàn),世界各國(guó)都在探索教學(xué)實(shí)踐中總結(jié)著先進(jìn)的思想和方法。對(duì)學(xué)生進(jìn)行創(chuàng)新性思維方法的培養(yǎng)得到很多學(xué)者和專家的一致認(rèn)可。隨著教改的不斷深入,初中數(shù)學(xué)教學(xué)同樣面臨著教改的嚴(yán)峻考驗(yàn),傳統(tǒng)的教學(xué)方法完全忽略學(xué)生的認(rèn)知習(xí)慣,全盤(pán)性的灌輸只能讓多數(shù)學(xué)生產(chǎn)生抵制情緒,不僅影響了學(xué)生的學(xué)習(xí)成績(jī),也同樣嚴(yán)重阻礙了學(xué)生的創(chuàng)新型思維的培養(yǎng)。知識(shí)的學(xué)習(xí)是一個(gè)交互的過(guò)程,知識(shí)的習(xí)得是一種主動(dòng)的自覺(jué)思維,單純的知識(shí)點(diǎn)只能成為學(xué)生頭腦中的一條小魚(yú),而蘊(yùn)藏在知識(shí)點(diǎn)里的數(shù)學(xué)方法和思想,就消失在遺忘的。培養(yǎng)學(xué)生自主去接受知識(shí),挖掘初中數(shù)學(xué)知識(shí)點(diǎn)中的“漁”,才能真正使學(xué)生受益終生。

三、探索初中數(shù)學(xué)思維方法的學(xué)習(xí)規(guī)律

學(xué)習(xí)是有規(guī)律的,學(xué)習(xí)是需要發(fā)現(xiàn)規(guī)律的,只有從數(shù)學(xué)知識(shí)中尋找出規(guī)律,才算是掌握了有效的學(xué)習(xí)方法,才能夠做到對(duì)知識(shí)的舉一反三、觸類旁通。我們知道,新課改的實(shí)施,其主要方面就是要實(shí)施素質(zhì)教育,而實(shí)施素質(zhì)教育的目的就是要轉(zhuǎn)變過(guò)去的教學(xué)觀念,用新的方法來(lái)啟發(fā)學(xué)生的思維智慧,讓學(xué)生成為自主學(xué)習(xí)的主角,而教師只是課堂教學(xué)的引領(lǐng)者、組織者、學(xué)生學(xué)習(xí)的協(xié)作者。

學(xué)習(xí)數(shù)學(xué)的思維方法就是要從一般的知識(shí)點(diǎn)中去發(fā)現(xiàn)知識(shí)的本質(zhì)。初中學(xué)生正處于思維的活躍期,教師從知識(shí)點(diǎn)的本質(zhì)出發(fā),逐步將知識(shí)進(jìn)行抽象概括和邏輯過(guò)渡,揭示出知識(shí)點(diǎn)中所蘊(yùn)含的知識(shí)點(diǎn)之間的內(nèi)在聯(lián)系,對(duì)學(xué)生的淳淳“誘導(dǎo)”,才能激發(fā)學(xué)生的主動(dòng)思維,學(xué)生的熱情才能被喚醒。

四、如何在初中數(shù)學(xué)課堂中實(shí)施創(chuàng)新性思維訓(xùn)練

1)有氛圍才能打開(kāi)學(xué)生的好奇心

氛圍是需要營(yíng)造的,無(wú)論學(xué)習(xí)什么課程,沒(méi)有濃烈的學(xué)習(xí)氛圍,一切學(xué)習(xí)都是干巴巴的。數(shù)學(xué)課堂的教學(xué),教師的第一任務(wù)就是想方設(shè)法將學(xué)習(xí)氛圍打造出來(lái),同樣的一個(gè)知識(shí)點(diǎn),比如在學(xué)元函數(shù)方程時(shí),讓學(xué)生扮演老板和顧客,老板如果按每件進(jìn)價(jià)8元的商品,10元售出,一天可以賣100件,如果降低價(jià)格則可以提高銷量,如果每件商品降低0.1元,則可以增加10件的銷售量,請(qǐng)問(wèn)老板,應(yīng)該降到多少才能實(shí)現(xiàn)利潤(rùn)的最大化?通過(guò)將試題變成生活化的實(shí)例,把學(xué)習(xí)數(shù)學(xué)的試題變成了生活中具體應(yīng)用,原本無(wú)聲的課堂瞬間活躍起來(lái),大家紛紛開(kāi)始討論如何設(shè)定方程式來(lái)計(jì)算出最佳的降價(jià)方案,如此一來(lái),學(xué)生的主動(dòng)性便自然而然的被引導(dǎo)起來(lái)。

2)分析數(shù)學(xué)問(wèn)題應(yīng)該從多方面進(jìn)行著手

學(xué)習(xí)數(shù)學(xué)知識(shí),解決數(shù)學(xué)問(wèn)題,往往需要學(xué)生從多方面進(jìn)行思維,尋找解題思路和方法。例如在解決平面幾何問(wèn)題時(shí),關(guān)于如何計(jì)算梯形的面積,教師一般會(huì)一一介紹關(guān)于梯形的面積的輔助線的畫(huà)法,學(xué)生只是被動(dòng)的在看,根本難以實(shí)現(xiàn)對(duì)知識(shí)的深刻理解,如果我們?cè)谡n堂上分別讓學(xué)生用剪刀剪一個(gè)梯形,然后讓學(xué)生自己思考計(jì)算出面積的方法,則大家的親自動(dòng)手會(huì)讓學(xué)生的理解更深刻,記憶更有效。

3)訓(xùn)練學(xué)生敢于思維的能力

勇敢不僅是行為的表征,同樣也是智慧的表現(xiàn)。很多學(xué)生在學(xué)習(xí)時(shí)不敢對(duì)過(guò)去的知識(shí)進(jìn)行質(zhì)疑,總是認(rèn)為所學(xué)的方法就是這樣,沒(méi)有問(wèn)題意識(shí),是思維凝固的表現(xiàn)。培養(yǎng)學(xué)生的問(wèn)題意識(shí),鍛煉學(xué)生的敢于猜想,特別是在數(shù)學(xué)世界里,猜想是最直接的驗(yàn)證和反駁。只要敢于問(wèn)為什么,就是鍛煉學(xué)生創(chuàng)造性思維的啟蒙。

總之,初中學(xué)生思維能力的訓(xùn)練,需要教師在課堂教學(xué)中主動(dòng)設(shè)置問(wèn)題情境,鼓勵(lì)學(xué)生對(duì)知識(shí)進(jìn)行去探究,去觀察、去思考。思維訓(xùn)練是學(xué)生智慧的起點(diǎn),思維訓(xùn)練是創(chuàng)新的源泉,將枯燥的知識(shí)融入生動(dòng)的氛圍里,用學(xué)生喜聞樂(lè)見(jiàn)的生活常識(shí)來(lái)增添學(xué)習(xí)的樂(lè)趣,從而促進(jìn)學(xué)生積極主動(dòng)地去打開(kāi)思維,發(fā)現(xiàn)知識(shí),獲取知識(shí)。

參考文獻(xiàn):

第5篇:大學(xué)數(shù)學(xué)思維訓(xùn)練范文

關(guān)鍵詞:數(shù)學(xué)思維能力;創(chuàng)造性思維;教學(xué)策略

中圖分類號(hào):G642.0 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1674-9324(2015)40-0204-02

一、引言

數(shù)學(xué)思維是指人腦與數(shù)學(xué)對(duì)象交互作用并按一般思維規(guī)律認(rèn)識(shí)數(shù)學(xué)規(guī)律的過(guò)程。數(shù)學(xué)思維能力指的是在數(shù)學(xué)思維過(guò)程中,對(duì)數(shù)學(xué)思維活動(dòng)的效率有著直接影響,使數(shù)學(xué)思維活動(dòng)能夠順利完成的表現(xiàn)在每一個(gè)思維個(gè)體上相對(duì)穩(wěn)定的心理狀態(tài)。要提高大學(xué)生數(shù)學(xué)能力,培養(yǎng)大學(xué)生數(shù)學(xué)思維能力是其中一個(gè)重要環(huán)節(jié),更重要的是,它對(duì)提高大學(xué)生創(chuàng)造性能力有著極其重要的意義。

二、主要數(shù)學(xué)思維能力簡(jiǎn)介

在高等數(shù)學(xué)教學(xué)過(guò)程中應(yīng)主要培養(yǎng)大學(xué)生如下幾個(gè)方面的數(shù)學(xué)思維能力:形象思維能力、抽象思維能力、辯證邏輯思維能力、創(chuàng)造性思維能力。

1.形象思維能力。形象思維就是僅僅利用人們頭腦中對(duì)事物的形象所進(jìn)行的思維,它完全拋開(kāi)了人們對(duì)事物的感知,具有直觀性、概括性、多面性等特征。要快速地理解問(wèn)題的本質(zhì),進(jìn)行直觀判斷最為迅速直接。要培養(yǎng)學(xué)生在數(shù)學(xué)學(xué)習(xí)中創(chuàng)造性解決問(wèn)題的能力,就必須培養(yǎng)學(xué)生的形象思維。例如,從一元到多元復(fù)合函數(shù)求導(dǎo),由于變量個(gè)數(shù)的增加,具體求導(dǎo)形式變得更加復(fù)雜,如果我們能描繪出多元復(fù)合函數(shù)求導(dǎo)的“樹(shù)形圖”,充分發(fā)揮數(shù)學(xué)形象思維,就可將多元復(fù)合函數(shù)求導(dǎo)鏈?zhǔn)椒▌t的具體求導(dǎo)過(guò)程揭示得清清楚楚,多元復(fù)合函數(shù)求導(dǎo)這個(gè)看似困難的問(wèn)題立即迎刃而解。

2.抽象思維能力。抽象思維能力是數(shù)學(xué)思維最顯著的特征之一,它是指離開(kāi)客觀事物的具體形象,從概念、定理或推理過(guò)程出發(fā)所進(jìn)行的思維。高等數(shù)學(xué)中的概念大都從實(shí)例出發(fā),從中提取出共同特征而得出的。例如導(dǎo)數(shù)的概念,一般的教材都討論兩個(gè)具體實(shí)例,一個(gè)是過(guò)曲線上一點(diǎn)所作切線的斜率,一個(gè)是變速直線運(yùn)動(dòng)物體的瞬時(shí)速度,前者是一個(gè)幾何問(wèn)題,后者是一個(gè)物理問(wèn)題,實(shí)際問(wèn)題及所在領(lǐng)域完全不同,但計(jì)算方法和步驟卻是完全相同的。我們都是拋開(kāi)問(wèn)題的具體內(nèi)容,從中抽象出相同的數(shù)學(xué)結(jié)構(gòu),得出導(dǎo)數(shù)的概念。與此類似的概念還有定積分、二重積分、曲線積分、曲面積分等。

3.辯證思維能力。辯證思維就是要求學(xué)生在思維過(guò)程中運(yùn)用客觀辯證法思考問(wèn)題,高等數(shù)學(xué)課程中辯證思想幾乎無(wú)處不在,例如:極限的定義是用有限變量來(lái)刻畫(huà)無(wú)限過(guò)程及有限到無(wú)限的矛盾轉(zhuǎn)化,它包含著變與不變、近似與精確、有限與無(wú)限等豐富而深刻的辯證關(guān)系;微分與積分形象地描述了連續(xù)變量局部變化與整體變化之間的對(duì)立統(tǒng)一;離散與連續(xù)、有限與無(wú)限、均勻與不均勻等都是矛盾對(duì)立統(tǒng)一的具體反映。

4.創(chuàng)造性思維能力。這是指?jìng)€(gè)人具有的一種有獨(dú)特創(chuàng)見(jiàn)的思維,創(chuàng)造性思維不僅能揭示現(xiàn)實(shí)世界的本質(zhì)及客觀事物之間的聯(lián)系,更重要的是,人們可以在此認(rèn)識(shí)的基礎(chǔ)上激發(fā)出新穎的、開(kāi)創(chuàng)前人的思維成果。從某種程度上說(shuō),創(chuàng)造性思維是形象思維、抽象思維、辯證思維等思維能力在長(zhǎng)期實(shí)踐中經(jīng)過(guò)充分發(fā)展、提高、躍升而達(dá)到的最高境界,同時(shí),它也是我們?cè)跀?shù)學(xué)教育過(guò)程中孜孜以求的理想境界和最終目標(biāo)。具體來(lái)說(shuō),它要求學(xué)生在解決數(shù)學(xué)問(wèn)題時(shí)能創(chuàng)新問(wèn)題解決方法,在學(xué)習(xí)或生活中能提出新的數(shù)學(xué)問(wèn)題,甚至在掌握基本理論和方法的基礎(chǔ)上創(chuàng)造新的數(shù)學(xué)理論。必須指出的是,創(chuàng)新是相對(duì)的,創(chuàng)新性思維是廣義的,它不一定要“高大上”,只要是對(duì)大學(xué)生來(lái)說(shuō)比較新穎獨(dú)到的思維和自身認(rèn)為有價(jià)值的思維活動(dòng),都是具有創(chuàng)造性的思維。

三、培養(yǎng)大學(xué)生數(shù)學(xué)思維能力的教學(xué)策略

大學(xué)生數(shù)學(xué)思維能力的培養(yǎng)屬教育學(xué)的范疇,也是一個(gè)十分重要的心理學(xué)問(wèn)題,更是數(shù)學(xué)教育智育目標(biāo)的根本任務(wù)。在教學(xué)過(guò)程中,我們應(yīng)深刻分析學(xué)生數(shù)學(xué)學(xué)習(xí)中數(shù)學(xué)思維的心理學(xué)基礎(chǔ),采取適當(dāng)?shù)慕虒W(xué)策略,努力提高學(xué)生數(shù)學(xué)思維水平。

1.培養(yǎng)學(xué)生積極的數(shù)學(xué)態(tài)度。數(shù)學(xué)態(tài)度包括學(xué)生對(duì)數(shù)學(xué)學(xué)科的認(rèn)識(shí)、對(duì)數(shù)學(xué)美的欣賞以及對(duì)數(shù)學(xué)中辯證思想的感受。教師在教學(xué)過(guò)程中應(yīng)主動(dòng)化解學(xué)生的不良情緒,讓學(xué)生充滿自信,對(duì)數(shù)學(xué)學(xué)習(xí)保持積極的態(tài)度。為此,教師應(yīng)做到以下幾點(diǎn):首先,教師要加強(qiáng)自身學(xué)習(xí),提高綜合素質(zhì),以豐富的知識(shí)和高尚的人格魅力感染學(xué)生;其次,教師要以樂(lè)觀積極的數(shù)學(xué)態(tài)度引領(lǐng)學(xué)生數(shù)學(xué)態(tài)度的形成;最后,除了課堂教學(xué)環(huán)節(jié),應(yīng)充分利用課后訪談、學(xué)習(xí)小組、結(jié)對(duì)子等方式,全方位、多角度促進(jìn)學(xué)生積極數(shù)學(xué)態(tài)度的形成。

2.充分利用課堂教學(xué)。課堂教學(xué)作為學(xué)校教學(xué)中最重要的環(huán)節(jié),有著不可替代的優(yōu)勢(shì)和作用。在數(shù)學(xué)課堂教學(xué)過(guò)程中,教師可以主要通過(guò)概念教學(xué)、數(shù)學(xué)定理的證明以及建立知識(shí)之間的聯(lián)系來(lái)加強(qiáng)對(duì)學(xué)生數(shù)學(xué)思維能力的培養(yǎng)。在概念教學(xué)環(huán)節(jié),不僅要講清楚引入的概念是什么,還要搞清楚引入概念的前因后果、來(lái)龍去脈;對(duì)概念的理解要求學(xué)生全面科學(xué)地分析概念的定義結(jié)構(gòu),深刻理解概念的內(nèi)在含義及其推廣、延展,對(duì)概念的基本性質(zhì)和應(yīng)用范圍做出概括總結(jié);最后,教師還應(yīng)該闡明數(shù)學(xué)概念及其特性在實(shí)踐中的應(yīng)用。在數(shù)學(xué)教學(xué)過(guò)程中,定理和公式的證明是極其重要的內(nèi)容,這是因?yàn)樽C明方法一方面具有典型性,掌握好這些方法能夠使學(xué)生在解決其他問(wèn)題時(shí)達(dá)到“舉一反三”的效果;另一方面,定理的證明過(guò)程也是創(chuàng)造性思維培育和發(fā)展的過(guò)程。為了讓學(xué)生對(duì)所學(xué)數(shù)學(xué)知識(shí)系統(tǒng)化和結(jié)構(gòu)化,思維訓(xùn)練和知識(shí)學(xué)習(xí)必須緊密結(jié)合,在傳授知識(shí)的同時(shí),教師必須緊緊抓住知識(shí)之間的內(nèi)在聯(lián)系,不失時(shí)機(jī)地對(duì)學(xué)生進(jìn)行思維訓(xùn)練,使學(xué)生能將所學(xué)知識(shí)在運(yùn)用中舉一反三。例如,極限是微積分的基礎(chǔ),連續(xù)、導(dǎo)數(shù)、定積分、偏導(dǎo)數(shù)、重積分、曲線曲面積分等均建立在極限定義基礎(chǔ)之上,教師在課堂教學(xué)中應(yīng)注意引導(dǎo)學(xué)生抓住知識(shí)之間的內(nèi)在聯(lián)系,讓學(xué)生將所學(xué)知識(shí)結(jié)構(gòu)化、系統(tǒng)化,這樣有助于培養(yǎng)他們的數(shù)學(xué)思維能力。

3.培養(yǎng)學(xué)生自學(xué)能力。自學(xué)是一個(gè)數(shù)學(xué)認(rèn)識(shí)過(guò)程,有感知、記憶、思維等,具有較大的獨(dú)立性,它需要大學(xué)生獨(dú)立地制訂計(jì)劃、組織實(shí)施、做出判斷、評(píng)價(jià)效果、進(jìn)行控制、自我調(diào)節(jié)。自學(xué)過(guò)程考驗(yàn)的是學(xué)生的獨(dú)立思考能力,這種獨(dú)立思考無(wú)疑是產(chǎn)生創(chuàng)造能力的重要源泉。因此,在高等教育階段數(shù)學(xué)教學(xué)過(guò)程中,一項(xiàng)非常重要而艱巨的任務(wù),就是培養(yǎng)學(xué)生獨(dú)立地發(fā)現(xiàn)、思考和解決問(wèn)題的能力,這種能力的培養(yǎng)不僅能夠促進(jìn)學(xué)生對(duì)知識(shí)的掌握,還能促進(jìn)學(xué)生對(duì)學(xué)習(xí)方法的訓(xùn)練和知識(shí)應(yīng)用能力的提高,使學(xué)生受益終生。為培養(yǎng)學(xué)生的自學(xué)能力,教師可以要求學(xué)生搞好預(yù)習(xí)和獨(dú)立完成作業(yè),教會(huì)學(xué)生對(duì)比、分類、歸納、總結(jié)以形成完整的知識(shí)體系,啟發(fā)學(xué)生一題多解,多角度考察知識(shí)點(diǎn)的聯(lián)系和運(yùn)用,讓學(xué)生形成多向聯(lián)系的知識(shí)網(wǎng)絡(luò),從而提高自學(xué)能力。

4.培養(yǎng)學(xué)生創(chuàng)造性思維。創(chuàng)造性思維是指我們對(duì)現(xiàn)實(shí)世界及其聯(lián)系進(jìn)行從未有過(guò)的思考并在此基礎(chǔ)上產(chǎn)生富有自主創(chuàng)見(jiàn)的思維。它不僅能揭示現(xiàn)實(shí)世界的本質(zhì)及客觀事物之間的聯(lián)系,更重要的是,人們可以在此認(rèn)識(shí)的基礎(chǔ)上激發(fā)出新穎的、開(kāi)創(chuàng)前人的思維成果。而數(shù)學(xué)創(chuàng)造性思維是一種復(fù)雜的心智活動(dòng),它要求學(xué)生在思維訓(xùn)練中能做出創(chuàng)新性的設(shè)想和富有理智的決斷。教師在數(shù)學(xué)教學(xué)中可以從以下幾個(gè)方面入手培養(yǎng)學(xué)生的創(chuàng)造性思維:(1)引導(dǎo)學(xué)生提出問(wèn)題和發(fā)現(xiàn)問(wèn)題。某種程度上說(shuō),提出問(wèn)題比解決問(wèn)題更加重要。引導(dǎo)和鼓勵(lì)學(xué)生提出和發(fā)現(xiàn)問(wèn)題對(duì)訓(xùn)練學(xué)生思維十分有益。例如在介紹微分中值定理時(shí),我們可以通過(guò)觀察羅爾定理和拉格朗日定理?xiàng)l件與結(jié)論的聯(lián)系,引導(dǎo)學(xué)生考慮是否可以利用羅爾定理證明拉格朗日定理。(2)采用啟發(fā)式的教學(xué)方式。啟發(fā)學(xué)生積極思維、培養(yǎng)學(xué)生主動(dòng)分析問(wèn)題和解決問(wèn)題的能力是培養(yǎng)學(xué)生創(chuàng)造性思維的核心。對(duì)于遇到的問(wèn)題,應(yīng)引導(dǎo)學(xué)生怎么去思考、從哪里入手、如何去解決。這樣,學(xué)生不僅會(huì)弄懂問(wèn)題本身,在以后的學(xué)習(xí)中遇見(jiàn)類似的問(wèn)題就會(huì)駕輕就熟,從而達(dá)到事半功倍的效果。(3)鼓勵(lì)學(xué)生大膽猜想。猜想是一種直覺(jué)思維,它往往是解決問(wèn)題的先導(dǎo),蘊(yùn)含極大的創(chuàng)造性。例如:在高等數(shù)學(xué)中,Green公式揭示了平面的曲線積分和二重積分之間的關(guān)系,在此重要結(jié)論基礎(chǔ)上,我們自然可以大膽猜想:能否建立空間的曲線積分和曲面積分之間的聯(lián)系呢?Gauss公式和Stokes公式正是在此猜想基礎(chǔ)上經(jīng)過(guò)大量工作而產(chǎn)生。由此可見(jiàn),鼓勵(lì)學(xué)生在學(xué)習(xí)過(guò)程中勤于思考、大膽猜想,對(duì)于培養(yǎng)學(xué)生的創(chuàng)造性思維具有十分重要的意義。(4)充分訓(xùn)練發(fā)散思維。在創(chuàng)造性思維的組成成分中,發(fā)散性思維占據(jù)主導(dǎo),這就要求我們?cè)趩?wèn)題解決過(guò)程中不墨守成規(guī),多方向思考,從多方面尋求各種可能的問(wèn)題解決辦法。教師在教學(xué)過(guò)程中對(duì)同一問(wèn)題可用不同方法講解,在講解習(xí)題時(shí)可嘗試一題多解,例如在求解未定式極限時(shí),可考慮運(yùn)用分解因式約分法、無(wú)窮小量替換法、極限公式法、洛必達(dá)法則等各種不同方法。(5)充分利用逆向思維。逆向思維是指從固有思維的反面去思考問(wèn)題,這樣可以使學(xué)生克服在思維過(guò)程中養(yǎng)成的正向思維的慣性,有助于大學(xué)生創(chuàng)造性思維的培養(yǎng)與發(fā)展。在高等數(shù)學(xué)相關(guān)內(nèi)容教學(xué)過(guò)程中應(yīng)注意以下幾個(gè)方面:一是注意定義與公式的正面與反面闡述;二是習(xí)慣引導(dǎo)學(xué)生對(duì)數(shù)學(xué)問(wèn)題進(jìn)行反方向思考;三是注意解題的可逆性原則。

數(shù)學(xué)思維能力培養(yǎng)是一項(xiàng)系統(tǒng)工程,需要包括數(shù)學(xué)教師在內(nèi)的教育工作者共同努力。思維是一個(gè)廣義抽象的事物,看不見(jiàn)、摸不著,但有思想的人能感受它的存在,數(shù)學(xué)思維能力的形成與發(fā)展因人而異,如何結(jié)合學(xué)生心理因素來(lái)進(jìn)行研究,是值得進(jìn)一步探討的問(wèn)題。

參考文獻(xiàn):

第6篇:大學(xué)數(shù)學(xué)思維訓(xùn)練范文

[關(guān)鍵詞]電教媒體發(fā)散思維求異性變式思維

發(fā)散思維指人根據(jù)當(dāng)前課題條件和已有經(jīng)驗(yàn),沿著不同的方向去思考,產(chǎn)生大量的設(shè)想,進(jìn)而提出獨(dú)特的見(jiàn)解。發(fā)散思維能產(chǎn)生新的獨(dú)特的思想,因而是創(chuàng)造性思維的重要成分。當(dāng)前我國(guó)兒童定勢(shì)思維特別嚴(yán)重,他們往往以比較固定的方式去認(rèn)知事物或作出行為反應(yīng),這是令廣大教師頭痛的問(wèn)題,也是正在努力攻克的一個(gè)“堡壘”。因而發(fā)展兒童發(fā)散思維對(duì)培養(yǎng)創(chuàng)造性思維,使其成長(zhǎng)具有重要意義,在解決問(wèn)題時(shí),教師若運(yùn)用電教媒體的直觀、形象的感性特點(diǎn),鼓勵(lì)兒童從多方面思考問(wèn)題,提出多種設(shè)想,從而找到最好的解決問(wèn)題的新方法。

一、利用電教媒體,進(jìn)行發(fā)散性思維訓(xùn)練,培養(yǎng)學(xué)生思維的求異性。

利用電教媒體進(jìn)行發(fā)散性教學(xué)是培養(yǎng)求異思維有效途徑,對(duì)同一思維對(duì)象不拘泥于唯一方案,可以從不同角度,以不同分式求解,特別是一題多解的訓(xùn)練,對(duì)培養(yǎng)幾種思維的敏捷性和變通性更有深刻意義。例如:在推導(dǎo)三角形面積公式的教學(xué)時(shí),教師運(yùn)用多媒體直觀的優(yōu)勢(shì),讓學(xué)生將自己所拼合的圖形在投影僅上演示出來(lái),從而幫助學(xué)生形成概念。

1、有的同學(xué)利用割補(bǔ)法,將映出的兩個(gè)完全重疊的三角形其中的一個(gè)沿它的“高”剪開(kāi)旋轉(zhuǎn),拼成一個(gè)長(zhǎng)方形。拼成的長(zhǎng)方形面積是底×高(ah),只計(jì)算其中的一個(gè)三角形面積,所以是底×高/2(ah/2),即是三角形的面積計(jì)算公式。

2、有的同學(xué)會(huì)映出所畫(huà)的另一張圖片,也是兩個(gè)完全重疊的三角形,將其中的一個(gè)旋轉(zhuǎn),讓兩個(gè)三角形拼成一個(gè)平行四邊形。拼成的平行四邊形面積是:底×高(ah),只計(jì)算其中一個(gè)三角形的面積,所以三角形面積計(jì)算公式是:底×高/2(ah/2)。

3、還可以引導(dǎo)學(xué)生從旋轉(zhuǎn)拼合角度去想,映出學(xué)生的圖片,如先映出一個(gè)三角形,用直尺找到底邊的中點(diǎn),從這點(diǎn)作三角形另一邊的平行線,割下原三角形的一部分,再將這部分向上旋轉(zhuǎn),與原三角形拼成一個(gè)平行四邊形,這個(gè)平行四邊形底邊是原三角底邊長(zhǎng)的一半,高是原三角形的高,面積也是原三角形的面積,所以三角形面積是底/2×高(a/2×h,即ah/2)。

4、也可以映出另一張圖片,從三角形高的中點(diǎn)作底邊的平行線,割下原三角形上面的一部分,旋轉(zhuǎn)下來(lái)與原三角形下面那部分拼成一個(gè)平行四邊形,從而也可以得出:底×(高/2)、[即a×(h/2),即ah/2]。

總之,雖然有四種迥然不同的拼合方法,但得出的計(jì)算三角形面積的公式是底×高/2(ah/2)。通過(guò)學(xué)生自己的演示,自然反饋出學(xué)生不同的積極思維過(guò)程.不僅幫助學(xué)生理解了為什么用底×高/2來(lái)計(jì)算三角形的面積而且形成了概念,發(fā)展了學(xué)生的實(shí)際動(dòng)手操作能力,更重要的是還對(duì)學(xué)生進(jìn)行了一題多解的創(chuàng)造性思維訓(xùn)練.

二、利用電教媒體,采用變式思維訓(xùn)練,培養(yǎng)學(xué)生思維敏捷性、靈活性。

在教學(xué)中有目的地運(yùn)用電教媒體進(jìn)行變式訓(xùn)練,對(duì)培養(yǎng)學(xué)生思維的靈活性,會(huì)起到更好的作用。變式思維訓(xùn)練方式很多,其中一題多變就是數(shù)學(xué)中常用方式,如利用多媒體直觀教學(xué)那種新穎、快捷、多變的特點(diǎn),在計(jì)算圖形面積時(shí)(如圖)直接在原圖上進(jìn)行割、補(bǔ)、拼并進(jìn)行誘導(dǎo),使學(xué)生對(duì)同一道找出多種解題思路,產(chǎn)生愉快積極的情緒體驗(yàn),引起學(xué)生充分注意,從而鍛煉和培養(yǎng)了思維靈活性。

第7篇:大學(xué)數(shù)學(xué)思維訓(xùn)練范文

1 初中數(shù)學(xué)學(xué)習(xí)中的分析方法

“分析”一詞在傳統(tǒng)的理解當(dāng)中有多種意思,一般人們所說(shuō)的分析,指的是思考或研究的意思,而這里所指的是針對(duì)數(shù)學(xué)學(xué)習(xí)中的“分析”,是與“綜合”相對(duì)應(yīng)的“分析”,可以理解為“分解”、“分離”或“分割”。分析方法是科學(xué)研究中的一個(gè)重要的方法,一般在西方的傳統(tǒng)文化當(dāng)中,更強(qiáng)調(diào)對(duì)事物的分析,而在東方文化當(dāng)中,對(duì)綜合或整體則強(qiáng)調(diào)較多。分析就是針對(duì)某一問(wèn)題,首先在確定研究的目標(biāo)后,把所研究的問(wèn)題分割為幾個(gè)相互聯(lián)系的子問(wèn)題,這些子問(wèn)題如何分割或分離就是分析方法所要解決的。

例如,要解議程:(x-1)=1首先應(yīng)引導(dǎo)學(xué)生通過(guò)觀察方程左邊可看作是乘方運(yùn)算,未知數(shù)x同時(shí)出現(xiàn)在底數(shù)與指數(shù)上,接著繼續(xù)引導(dǎo)學(xué)生們思考在哪幾種情況下,乘方的結(jié)果為1的。學(xué)生通過(guò)分析發(fā)現(xiàn)可以分成三種情況:①底數(shù)為1,指數(shù)任意;②底數(shù)為-1,指數(shù)為偶數(shù)時(shí);③指數(shù)為0,但底數(shù)不為0時(shí)。在整個(gè)分析過(guò)程中,提醒學(xué)生考慮可能的各種情況,把該題目分解為若干個(gè)小的子問(wèn)題,然后針對(duì)各個(gè)子問(wèn)題求解,從而得到方程的求解結(jié)果。

在初中數(shù)學(xué)教學(xué)和學(xué)習(xí)中,分析方法是學(xué)生應(yīng)掌握的基本分析方法之一。學(xué)生對(duì)一個(gè)較為復(fù)雜的數(shù)學(xué)命題或數(shù)學(xué)問(wèn)題,在解決時(shí)如何能在較短的時(shí)間內(nèi),分為若干相互聯(lián)系的較為簡(jiǎn)單的子問(wèn)題,然后在對(duì)各個(gè)子問(wèn)題分別加以解決,這不僅對(duì)學(xué)生解決數(shù)學(xué)題目有很大幫助,而且在習(xí)慣該方法后也對(duì)學(xué)生解決實(shí)際生活問(wèn)題有一定益處。

2 初中數(shù)學(xué)學(xué)習(xí)中的綜合方法

就是一個(gè)綜合的過(guò)程。下面舉一個(gè)數(shù)形集合的題目為例來(lái)說(shuō)明:如圖1,邊長(zhǎng)為2的正方形ABCD中,頂點(diǎn)A的坐標(biāo)是(0,2),一次函數(shù)y=x+t的圖像l隨t的不同取值變化時(shí),位于l右下方由l和正方形的邊構(gòu)成的圖形面積為S(陰影部分)。平面直角坐標(biāo)系中,畫(huà)出S關(guān)于t的函數(shù)圖像。

要解決這一問(wèn)題,首先采用的是上面所提到的分析方法,即把所研究的問(wèn)題分割為幾個(gè)相互聯(lián)系的子問(wèn)題:

①當(dāng)l與y軸交點(diǎn)在點(diǎn)O及其下方時(shí),陰影部分的形狀如何?

②當(dāng)l與y軸交點(diǎn)在點(diǎn)A與點(diǎn)O之間,陰影部分形狀如何?

③當(dāng)l與y軸交點(diǎn)在點(diǎn)D與點(diǎn)A之間(包含點(diǎn)A)時(shí),陰影部分形狀如何?

④當(dāng)l與y軸交點(diǎn)在點(diǎn)D及其上方時(shí),陰影部分的形狀如何?

解決這些問(wèn)題就可得到S與t之間

的函數(shù)關(guān)系式:

當(dāng)t≤0時(shí),S=0;當(dāng)0

當(dāng)2≤t≤4時(shí),S=-(t-4)2+4;當(dāng)t≥4時(shí),

S=4。接著,綜合以上結(jié)果在同一平面直

角坐標(biāo)系中繪制出函數(shù)圖象即可,如圖2所示。

在整個(gè)問(wèn)題的分析與解決過(guò)程中,將之分解為幾個(gè)相關(guān)的子問(wèn)題是非常關(guān)鍵的,“這些問(wèn)題劃分的依據(jù)是什么?你是怎樣想到的?”“最后綜合到一起后的結(jié)果是否是全面的呢?”要引導(dǎo)學(xué)生思考這樣的問(wèn)題,從而培養(yǎng)他們分析、綜合思考問(wèn)題的能力。

3 初中數(shù)學(xué)學(xué)習(xí)中的歸納方法

歸納法在各種方法中是一個(gè)較為重要的方法,是從一系列具體的事物總結(jié)出有規(guī)律的方法,是一個(gè)從抽象化的過(guò)程,是一個(gè)至下而上的過(guò)程。數(shù)學(xué)學(xué)科本質(zhì)上就是一門抽象性的學(xué)科,是從各種自然界的事物中抽象概括出來(lái)的一門科學(xué),因此,在數(shù)學(xué)學(xué)習(xí)中掌握歸納的方法不僅是掌握一種解題的方法,更是數(shù)學(xué)這門學(xué)科的本質(zhì)要求的。初中數(shù)學(xué)學(xué)習(xí)中,學(xué)習(xí)思維仍不是很成熟,歸納法的應(yīng)用一般應(yīng)強(qiáng)調(diào)對(duì)一些較為簡(jiǎn)單的規(guī)律的歸納,而不應(yīng)該上升到理論歸納的高度,應(yīng)合理引導(dǎo),重點(diǎn)是培養(yǎng)學(xué)生的歸納的思維習(xí)慣。

例如,在探索多邊形的內(nèi)角和的內(nèi)容時(shí),先根據(jù)三角形內(nèi)角和為180°讓學(xué)生探索出四邊形,五邊形,六邊形內(nèi)角和分別是180°×2,180°×3,180°×4。在探究這一問(wèn)題的過(guò)程中,學(xué)生從幾個(gè)具體的邊數(shù)與內(nèi)角和的關(guān)系中,通過(guò)數(shù)學(xué)的思維方法歸納出了具有普遍性的公式:多邊形內(nèi)角和與邊數(shù)n之間的關(guān)系為180°(n-2)。這種歸納法體現(xiàn)出從特殊到一般的數(shù)學(xué)思想。

4 初中數(shù)學(xué)學(xué)習(xí)中的推演方法

推演是與歸納相對(duì)應(yīng)的思維過(guò)程。歸納法強(qiáng)調(diào)的是從一系列的具體的事務(wù)中總結(jié)出規(guī)律,而推演則強(qiáng)調(diào)的是把一些已經(jīng)得到的有規(guī)律性的結(jié)論,或前人總結(jié)得到的概念、公式、定理,應(yīng)用到實(shí)際具體的問(wèn)題當(dāng)中,得出結(jié)論,選擇出正確的答案,是一個(gè)從抽象到具體的過(guò)程,是致上而下的。推演方法實(shí)際在從小學(xué)甚至到大學(xué)整個(gè)數(shù)學(xué)學(xué)習(xí)過(guò)程中,是應(yīng)用最多的思維方法之一。教科書(shū)上有較多的概念、公式或定理,常規(guī)的解題過(guò)程中就是把這些規(guī)律性的結(jié)論應(yīng)用到具體的題目當(dāng)中。

在初中日常教學(xué)當(dāng)中,推演方法的應(yīng)用不應(yīng)當(dāng)僅僅是用課本學(xué)到的規(guī)律性的知識(shí)來(lái)求解題目,而更應(yīng)當(dāng)注意對(duì)學(xué)生思維習(xí)慣的培養(yǎng),比如在講解某個(gè)規(guī)律性命題后,老師可以引導(dǎo)學(xué)生來(lái)討論該命題可以用來(lái)解決哪些數(shù)學(xué)問(wèn)題,或者對(duì)于一個(gè)的題目,有一類求解的方法,老師在講過(guò)后可以引導(dǎo)學(xué)習(xí)來(lái)討論還有哪些題目適合于該種方法,這些都是對(duì)推演思維的訓(xùn)練。

第8篇:大學(xué)數(shù)學(xué)思維訓(xùn)練范文

國(guó)內(nèi)的高等藝術(shù)教育按照專業(yè)學(xué)科進(jìn)行分類,它們之間的教學(xué)也存在較大差別。以中央美術(shù)學(xué)院為例,二級(jí)學(xué)院分有造型學(xué)院,設(shè)計(jì)學(xué)院,建筑學(xué)院、實(shí)驗(yàn)藝術(shù)學(xué)院,人文學(xué)院等。每個(gè)學(xué)院都有類似的專業(yè)基礎(chǔ)課程,雖相似但也存在較大差別:如設(shè)計(jì)學(xué)院開(kāi)設(shè)的素描基礎(chǔ),其教學(xué)內(nèi)容主體為靜物素描;而造型學(xué)院開(kāi)設(shè)的素描課程則以傳統(tǒng)的人體寫(xiě)生為主。這種學(xué)科式的課程差異一直從本科貫穿到研究生教育,不同專業(yè)的學(xué)生從剛?cè)胄>捅毁N上了設(shè)計(jì)、造型等分類標(biāo)簽。國(guó)外的高等藝術(shù)教育有別于國(guó)內(nèi),以英國(guó)皇家藝術(shù)學(xué)院的設(shè)計(jì)專業(yè)研究生課程為調(diào)研案例,他們的學(xué)習(xí)是開(kāi)放式的過(guò)程,導(dǎo)師因材施教,因人而異地引導(dǎo)學(xué)生,不會(huì)刖趾適履式地強(qiáng)灌知識(shí),并鼓勵(lì)學(xué)生嘗試從平面到裝置等多種藝術(shù)表現(xiàn)手段,這種學(xué)科交叉式的教育給予學(xué)生更加廣闊自由的發(fā)展空間?!?015臺(tái)灣國(guó)際學(xué)生創(chuàng)意設(shè)計(jì)大賽”從今年三月開(kāi)始,筆者身為當(dāng)代藝術(shù)教學(xué)方向的任課教師,擔(dān)任上海理工大學(xué)工業(yè)設(shè)計(jì)專業(yè)學(xué)生參賽團(tuán)隊(duì)的指導(dǎo)教師。面對(duì)創(chuàng)意設(shè)計(jì)比賽,如何開(kāi)拓學(xué)生思維,這成為一次交叉學(xué)科之間的教學(xué)體驗(yàn)。

2突破思維的幾種方式

針對(duì)“2015臺(tái)灣國(guó)際學(xué)生創(chuàng)意設(shè)計(jì)大賽”的主題“擁抱Embrace”,指導(dǎo)教師制訂了從方案草圖到設(shè)計(jì)成稿的三個(gè)月周期的計(jì)劃。其中方案草圖是創(chuàng)意的生成環(huán)節(jié),也是整個(gè)課程的重點(diǎn),在此環(huán)節(jié)中,筆者將以下幾種當(dāng)代藝術(shù)創(chuàng)作的思維方式運(yùn)用在教學(xué)過(guò)程當(dāng)中。

2.1逆向思維

逆向思維是當(dāng)代藝術(shù)教學(xué)中的常用思維方法,主要內(nèi)容有“反義詞思維訓(xùn)練”。這種對(duì)立式的思維是一種脫離常態(tài)視覺(jué)造型的發(fā)散性思維方式,在許多當(dāng)代藝術(shù)經(jīng)典中均有出現(xiàn)。如反義詞“大與小”之間的轉(zhuǎn)換作品有瑞典藝術(shù)家克拉斯•歐登柏格(ClaesOldenburg)的代表作品《衣夾》,他將日常消費(fèi)品放大萬(wàn)倍變成異于常態(tài)視覺(jué)的裝置雕塑。再如“空與實(shí)”之間的轉(zhuǎn)換作品有英國(guó)藝術(shù)家瑞秋•懷特里德(RachelWhiteread)的作品《無(wú)題•房子》。她將一幢別墅的內(nèi)部空間灌滿水泥,再將建筑實(shí)體拆卸,剩下的即是原本空無(wú)的內(nèi)部空間。這些逆向思維不同于平面設(shè)計(jì)中的圖地反轉(zhuǎn)和正負(fù)形的概念,圖地雖是對(duì)立關(guān)系,但脫離不了圖形與外觀;而當(dāng)代藝術(shù)中的逆向思維轉(zhuǎn)換除了外形中的變化之外,更重要的是觀念上的轉(zhuǎn)變。通過(guò)訓(xùn)練,學(xué)生分類篩選出與“擁抱”一詞的相關(guān)詞組,從擁抱的距離選擇了“遠(yuǎn)與近”,從擁抱的對(duì)象選擇了“人與物”、“人與環(huán)境”等,并對(duì)所選詞組進(jìn)行定位思考后,最終討論出兩款設(shè)計(jì)方案,分別是“無(wú)聲心跳手環(huán)”和“防霾衣帽”。

2.2從模仿到功能拓展

亞里士多德認(rèn)為藝術(shù)的起源來(lái)自于“模仿”,這說(shuō)明了“模仿”對(duì)于藝術(shù)創(chuàng)造是不可替代的。在學(xué)生的思維訓(xùn)練中模仿是直觀的,大多數(shù)人對(duì)于“擁抱”的既定認(rèn)識(shí),是人與人之間相擁的姿勢(shì)。學(xué)生從擁抱姿勢(shì)延伸至相近的詞語(yǔ)有“環(huán)繞”、“交錯(cuò)”、“籠罩”等,再以“物”模仿?lián)肀нM(jìn)行拓展。模仿過(guò)程中,他們?cè)O(shè)計(jì)和選擇了最似“擁抱”動(dòng)作的幾種產(chǎn)品,分別是能包裹的豌豆莢沙發(fā),能環(huán)繞的耳機(jī)和能吞食的分類垃圾桶,并在此基礎(chǔ)上進(jìn)行理性的功能拓展。從沙發(fā)的豌豆中拓展出了游戲與儲(chǔ)藏的功能,在耳機(jī)上設(shè)計(jì)了LED燈了添加了音量可視化的功能,將分類垃圾桶拓展出垃圾誤處理后的報(bào)警功效。

2.3情感的表達(dá)

當(dāng)代藝術(shù)重視觀念性,重視每個(gè)創(chuàng)作個(gè)體的唯一性的情感經(jīng)驗(yàn)。當(dāng)藝術(shù)家將個(gè)人情感置于作品中,作品也就成為藝術(shù)家情感宣揚(yáng)的途徑。后現(xiàn)代主義藝術(shù)大師約瑟夫•博伊斯(JosephBeuys)將拯救過(guò)自己生命的油脂和毛氈融進(jìn)創(chuàng)作里,表達(dá)著他“拯救治愈”的觀念;日本藝術(shù)家草間彌生同樣以繪畫(huà)的方式將自己的視覺(jué)病態(tài)體驗(yàn)通過(guò)作品再現(xiàn)在大眾視野里,這都是個(gè)人化的情感被藝術(shù)所包容后的體現(xiàn)。當(dāng)今設(shè)計(jì)在“以人為本”的理念中已不僅僅局限在滿足功能層面上需求。教學(xué)過(guò)程中,老師引導(dǎo)學(xué)生挖掘個(gè)體的情感經(jīng)驗(yàn),提出的創(chuàng)意方案都是創(chuàng)作者的情感投射,其中戀愛(ài)滋味的口杯,珍惜時(shí)間的流水存錢罐,發(fā)光腳印地毯等方案最能反映出現(xiàn)代年輕人的心態(tài)。

3“心跳”的產(chǎn)生

在方案甄選環(huán)節(jié)中,全票通過(guò)的是來(lái)自逆向思維訓(xùn)練中的“無(wú)聲心跳手環(huán)”方案(以下簡(jiǎn)稱“心跳”),這是一款基于情侶之間遠(yuǎn)距離情感需求而設(shè)計(jì)的手環(huán),造型與運(yùn)動(dòng)小米手環(huán)相似,但其理念并不是為運(yùn)動(dòng)而設(shè)計(jì),而是將其定位在心靈溝通。

3.1工作流程

根據(jù)設(shè)計(jì)流程分為調(diào)研、討論、設(shè)計(jì)三部分。前期安排學(xué)生做足充分的市場(chǎng)調(diào)研,產(chǎn)品設(shè)計(jì)首先要考慮消費(fèi)對(duì)象的需求,產(chǎn)品只有在設(shè)計(jì)理念與消費(fèi)需求的高度統(tǒng)一下才能贏得認(rèn)同。在調(diào)研的基礎(chǔ)上再討論調(diào)整設(shè)計(jì)方案,并從設(shè)計(jì)理念,造型,材料,技術(shù)等四個(gè)方向進(jìn)行派分工作,安排學(xué)生分組同時(shí)進(jìn)行。經(jīng)過(guò)兩輪流程產(chǎn)生了情侶認(rèn)同度較高的產(chǎn)品設(shè)計(jì)——“無(wú)聲心跳手環(huán)”。

3.2設(shè)計(jì)理念

“無(wú)聲心跳手環(huán)”是針對(duì)“擁抱”為主題的臺(tái)灣國(guó)際學(xué)生創(chuàng)意大賽而設(shè)計(jì)的,源自于學(xué)生逆向思維拓展中的“遠(yuǎn)與近”反義詞訓(xùn)練,學(xué)生將近距離的關(guān)心摟抱轉(zhuǎn)換為遠(yuǎn)距離的環(huán)繞式“擁抱”。情侶雙方佩戴手環(huán)時(shí),通過(guò)手環(huán)上動(dòng)態(tài)心電圖的變化感受到彼此情緒的轉(zhuǎn)變,當(dāng)對(duì)方情緒出現(xiàn)波動(dòng),另一方可通過(guò)手環(huán)感受到對(duì)方的心情,與他心有靈犀,這就是產(chǎn)品設(shè)計(jì)理念之一。設(shè)計(jì)中所指的情緒變化是泛指,手環(huán)只能感受到對(duì)方情緒的波動(dòng),不能確切肯定對(duì)方的波動(dòng)來(lái)自于何種狀況,這本是設(shè)計(jì)的缺陷,但這一弊端被轉(zhuǎn)化為產(chǎn)品的特點(diǎn)。通過(guò)跑馬燈燈光顏色深淺以及流動(dòng)速率的變化,可以猜測(cè)對(duì)方的心情和狀態(tài),正是這種不確定的變化刺激了人猜測(cè)與窺視的本能欲望。天各一方,傳遞思念與愛(ài)意,分享快樂(lè)和幸福的同時(shí)也給雙方留有一定的思念空間和想象余地,而這“猜一猜”即是產(chǎn)品設(shè)計(jì)理念之二。

3.3設(shè)計(jì)造型

“無(wú)聲心跳手環(huán)”材料定為電子硅膠材料,為區(qū)別于運(yùn)動(dòng)小米手環(huán),從外觀上突破了大眾對(duì)手環(huán)的傳統(tǒng)定義,設(shè)計(jì)的整個(gè)造型接近于方形(見(jiàn)圖1)。方形的靈感取自于枷鎖的變形,寓意著鎖住愛(ài)情,而情侶間的愛(ài)情枷鎖本身就是自愿的、甜蜜的。雖然在設(shè)計(jì)中難以見(jiàn)到愛(ài)情枷鎖的影子,但產(chǎn)品本身異乎尋常的方形在眾多手環(huán)中已是新奇獨(dú)特了。

4課程的重點(diǎn)與難點(diǎn)

設(shè)計(jì)的靈魂是創(chuàng)意,而創(chuàng)意來(lái)源于活躍的思維,所以整個(gè)課程的重點(diǎn)是創(chuàng)意生成的方案環(huán)節(jié)。如何把握住設(shè)計(jì)的命脈,做出具有創(chuàng)意的設(shè)計(jì),也成為教學(xué)過(guò)程中的難點(diǎn)。在交流過(guò)程中,學(xué)生自身存在著不可忽視的硬傷,這也是指導(dǎo)教師在教學(xué)引導(dǎo)過(guò)程中不可回避的問(wèn)題,具體為以下幾種情況。

4.1脫離不了自我為中心

整個(gè)流程中,常遇到的學(xué)生思維枯竭的狀況。在方案草圖的過(guò)程中,學(xué)生眼界未拓寬,脫離不了“學(xué)生”的身份屬性,常圍繞自我為中心,提交的方案也大都是學(xué)生生活中的杯子,椅子,黑板擦等。這突出暴露了學(xué)生生活中發(fā)現(xiàn)解決問(wèn)題的能力中“觀察能力較弱,體驗(yàn)生活層面較窄”的實(shí)際情況。

4.2盲目且涉及面太寬

在主題性較強(qiáng)的此次課程中,少數(shù)學(xué)生又表現(xiàn)出另一特點(diǎn),即方案涉及面太寬,針對(duì)性不強(qiáng)。當(dāng)無(wú)從下手的時(shí)候,便力不從心地將與“擁抱”毫無(wú)聯(lián)系的方案提交上來(lái)充數(shù),如計(jì)時(shí)器鍋、仙人掌鬧鐘等。這些都是未進(jìn)入思維拓展訓(xùn)練狀態(tài)的直接表現(xiàn)。

4.3工作流程上的倒置

既然是工業(yè)產(chǎn)品設(shè)計(jì),消費(fèi)者的購(gòu)買意愿需要前期考察和調(diào)研。以人為本是我們提倡遵循的設(shè)計(jì)理念,在課程中,部分學(xué)生忽視了市場(chǎng)調(diào)研導(dǎo)向,將全部重心放在外觀設(shè)計(jì)上,強(qiáng)化自己的主觀設(shè)計(jì),這些以自我為中心的設(shè)計(jì)方式有悖于常規(guī)設(shè)計(jì)流程,往往以失敗而告終。

5造型思維訓(xùn)練與工業(yè)設(shè)計(jì)的交融

當(dāng)代藝術(shù)教學(xué)中的思維方式屬于造型思維訓(xùn)練的其中一類,在造型思維訓(xùn)練與工業(yè)產(chǎn)品設(shè)計(jì)交融的過(guò)程中產(chǎn)生了怎樣的化學(xué)效應(yīng),下面是筆者在教學(xué)過(guò)程中體驗(yàn)到的幾點(diǎn)。

5.1排異反應(yīng)調(diào)查

工業(yè)設(shè)計(jì)專業(yè)學(xué)生經(jīng)過(guò)一系列專業(yè)課學(xué)習(xí)之后,形成了專業(yè)背景下自身的設(shè)計(jì)思路,多數(shù)學(xué)生在過(guò)程中表現(xiàn)出習(xí)慣從外觀造型設(shè)計(jì)入手。在課程進(jìn)入階段,筆者顧慮學(xué)生對(duì)于當(dāng)代藝術(shù)的思維方式訓(xùn)練會(huì)起排異反應(yīng),根據(jù)十一位學(xué)生的綜合調(diào)研分析之后,72%的同學(xué)能進(jìn)入角色狀態(tài),課程效果良好,28%同學(xué)愿意接受,但是作用時(shí)間周期延長(zhǎng),整個(gè)教學(xué)過(guò)程未見(jiàn)明顯排斥的狀況。

5.2產(chǎn)生的效應(yīng)

設(shè)計(jì)類學(xué)生對(duì)于外觀造型的設(shè)計(jì)是專業(yè)本能思考,在未接收思維拓展訓(xùn)練時(shí),學(xué)生普遍將重心放在外觀造型上,并追求其的新、奇、多變上,在設(shè)計(jì)理念上往往停留在使用功能層面,難有長(zhǎng)遠(yuǎn)性的思考。在思維方式訓(xùn)練中,逆向思維訓(xùn)練讓他們學(xué)會(huì)了從多個(gè)角度去理性的分析和思考,嘗試多種可能性。情感的表達(dá)訓(xùn)練中,他們進(jìn)入角色去理解不同人群的心理,分析自己與他人的特殊性,并從自我情感出發(fā),尋求自我突破。雖然這些是當(dāng)代藝術(shù)教學(xué)中的思維訓(xùn)練方式,但在工業(yè)設(shè)計(jì)教學(xué)中也產(chǎn)生了積極的教學(xué)效果。

5.3可能性延續(xù)

結(jié)合主題明確的創(chuàng)意設(shè)計(jì)大賽,貫穿整個(gè)思維拓展訓(xùn)練,目標(biāo)明確效果明顯,是一次完好的案例。在學(xué)生后續(xù)的信息反饋中,經(jīng)過(guò)思維訓(xùn)練的同學(xué)在接下的課程設(shè)計(jì)中表現(xiàn)出與本專業(yè)拓展訓(xùn)練之外的同學(xué)之間的差異。這些分歧尤其體現(xiàn)在設(shè)計(jì)理念及作品觀念上。這種轉(zhuǎn)變是正面的、進(jìn)步的,也為之后的跨專業(yè)設(shè)計(jì)教學(xué)提供了的借鑒和經(jīng)驗(yàn)。

6小結(jié)

第9篇:大學(xué)數(shù)學(xué)思維訓(xùn)練范文

關(guān)鍵詞:數(shù)學(xué)教學(xué);創(chuàng)新能力;思維;培養(yǎng)

中圖分類號(hào):G633.6

一、初中數(shù)學(xué)教育中培養(yǎng)創(chuàng)新能力要正確理解含義

所謂的創(chuàng)新就是指以新發(fā)明、新描述及新思維作為特征的概念化的過(guò)程,創(chuàng)新這一詞主要起源于拉丁語(yǔ)。創(chuàng)新主要包含更新、創(chuàng)造新的東西及改變這三個(gè)主要的含義,創(chuàng)新已經(jīng)成為了人類特有的一種實(shí)踐能力及認(rèn)知能力, 更是人類主觀能動(dòng)性高級(jí)的表現(xiàn)形式,成為推動(dòng)我國(guó)民族進(jìn)步及我國(guó)社會(huì)發(fā)展的不竭動(dòng)力。當(dāng)今社會(huì)競(jìng)爭(zhēng)是人才的競(jìng)爭(zhēng),更是人才創(chuàng)造力的競(jìng)爭(zhēng),培養(yǎng)學(xué)生的創(chuàng)新能力必須盡早做起。在初中數(shù)學(xué)教育教學(xué)過(guò)程中,教師必須注重對(duì)學(xué)生創(chuàng)新能力的培養(yǎng),只有這樣,才能夠提高學(xué)生的創(chuàng)造力,進(jìn)而為學(xué)生成才并立足社會(huì)奠定堅(jiān)實(shí)的基礎(chǔ)。

二、初中數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生創(chuàng)新思維能力的方法

1.注重和諧師生關(guān)系的建立,為學(xué)生自主思維打下情感基礎(chǔ)

在初中數(shù)學(xué)教學(xué)中,教師要培養(yǎng)學(xué)生的創(chuàng)新能力,首先要以友善、平等和寬容的態(tài)度對(duì)待學(xué)生。如果教師能夠把學(xué)生當(dāng)做朋友一樣對(duì)待,尊重學(xué)生的個(gè)性與人格尊嚴(yán),多給學(xué)生一分關(guān)愛(ài),多給學(xué)生一分溫暖,那么師生關(guān)系肯定就會(huì)多一分融洽和諧。和諧的師生關(guān)系有助于提高課堂教學(xué)效率,有助于發(fā)揮學(xué)生的聰明才智,有助于師生身心健康,也有助于學(xué)生道德修養(yǎng)的提高,更有助于學(xué)生創(chuàng)新能力的發(fā)展。和諧應(yīng)是每一個(gè)教師所追求的一種教育和教學(xué)的藝術(shù),只有達(dá)到和諧才能真正展示教育的藝術(shù)和水平,只有在和諧的師生關(guān)系下,教師才能引導(dǎo)學(xué)生參與到初中數(shù)學(xué)學(xué)習(xí)中,讓學(xué)生敢于發(fā)表自己的見(jiàn)解,提出自己不同的建議。只有這樣才能最大限度地提高初中數(shù)學(xué)教學(xué)質(zhì)量。

2.保護(hù)學(xué)生的好奇心,激發(fā)學(xué)生的學(xué)習(xí)興趣

興趣是最好的老師,沒(méi)有興趣的學(xué)習(xí),就是強(qiáng)制性的學(xué)習(xí),不僅讓學(xué)生喪失了對(duì)學(xué)習(xí)的熱情和對(duì)于知識(shí)的渴求,而且逐漸的讓學(xué)生沒(méi)有了學(xué)習(xí)的欲望,無(wú)論任何意義和任何方面的學(xué)習(xí),興趣是第一任老師,在學(xué)生熱愛(ài)學(xué)習(xí)的基礎(chǔ)之上,才能夠推動(dòng)學(xué)生進(jìn)行自主創(chuàng)新。

對(duì)未知的事物和現(xiàn)象的好奇,是每個(gè)人都有的心理,未成年人的好奇心尤其強(qiáng)烈。要保護(hù)學(xué)生的好奇心,就要對(duì)學(xué)生的想法,甚至是有些可笑幼稚的想法加以呵護(hù),在他們想法的基礎(chǔ)上加以引導(dǎo),引導(dǎo)到探求事物的本質(zhì)和現(xiàn)象發(fā)生的原因上。學(xué)生所要學(xué)習(xí)的數(shù)學(xué)知識(shí),對(duì)學(xué)生而言是未知的,如何進(jìn)行教學(xué)設(shè)計(jì),激發(fā)學(xué)生的好奇心,是教師在教學(xué)設(shè)計(jì)時(shí)應(yīng)該認(rèn)真考慮的問(wèn)題。主要做法是在引入新的內(nèi)容時(shí),認(rèn)真研究學(xué)生的心理,把所要學(xué)習(xí)的知識(shí)融入符合學(xué)生認(rèn)知心理的問(wèn)題情境,激發(fā)學(xué)生的好奇心。例如在教學(xué)“多邊形內(nèi)角和”這一節(jié)時(shí),可讓學(xué)生每人畫(huà)一個(gè)凸多邊形,然后說(shuō):“不管哪一位同學(xué)只要告訴我你畫(huà)的多邊形邊數(shù),我都能告訴你多邊形的所有角的度數(shù)和。不信,可以試一試?!边@個(gè)問(wèn)題涉及多邊形邊數(shù)和三角形內(nèi)角和的關(guān)系,而學(xué)生是不知道的,教師提出此問(wèn)題就是要引起學(xué)生的好奇心,激發(fā)學(xué)生探求其中的奧秘。對(duì)于這個(gè)問(wèn)題有的學(xué)生會(huì)好奇,進(jìn)而會(huì)去思考這個(gè)公式究竟是什么?有的學(xué)生會(huì)想:老師是怎么算出來(lái)的?老師肯定知道什么規(guī)律。這樣學(xué)生的好奇心就被充分調(diào)動(dòng)起來(lái)。我們要根據(jù)不同學(xué)生的情況,用不同的方式進(jìn)行引導(dǎo),盡可能讓他們自己獨(dú)立思考,在必要的時(shí)候給予適當(dāng)提示。

3.在解題教學(xué)中培養(yǎng)學(xué)生的獨(dú)創(chuàng)性思維

所謂獨(dú)創(chuàng)性思維,就是有別于常規(guī)思維方式的思維。在數(shù)學(xué)解題過(guò)程中,學(xué)生的獨(dú)創(chuàng)性思維能力常常表現(xiàn)為能用特殊的方法解決數(shù)學(xué)問(wèn)題。這是形成獨(dú)創(chuàng)性思維能力的標(biāo)志,并且在思考問(wèn)題的過(guò)程中,解決問(wèn)題的方式方法越新穎、越簡(jiǎn)捷,獨(dú)創(chuàng)性思維能力就越強(qiáng)。因此教師在解題教學(xué)中要善于培養(yǎng)學(xué)生的獨(dú)創(chuàng)性思維能力。怎樣才能培養(yǎng)學(xué)生的獨(dú)創(chuàng)性思維能力呢?這需要教師善于引導(dǎo)學(xué)生分析問(wèn)題的特征,充分發(fā)揮學(xué)生的求異思維在解題過(guò)程中的作用,從而最大限度地發(fā)展學(xué)生的獨(dú)創(chuàng)性思維能力。

4.加強(qiáng)思維與發(fā)散思維訓(xùn)練,拓展學(xué)生思維空間

師生間要?jiǎng)?chuàng)建良好的關(guān)系,學(xué)習(xí)要在輕松、愉快的氛圍下進(jìn)行,要想能夠讓學(xué)生自主的進(jìn)行學(xué)習(xí)讓的突破和創(chuàng)新,來(lái)激發(fā)學(xué)生自身的創(chuàng)造性思維,就要發(fā)揮學(xué)生在課堂的主體作用,教師只是一個(gè)引導(dǎo)的作用,在關(guān)鍵時(shí)候給予指點(diǎn)和適當(dāng)?shù)姆治?。只要教師善于引?dǎo),善于啟發(fā),富有創(chuàng)新意識(shí),學(xué)生的創(chuàng)新思維品質(zhì)就能夠得到提高。

在數(shù)學(xué)教學(xué)中進(jìn)行集中與發(fā)散思維訓(xùn)練,針對(duì)相同知識(shí)點(diǎn)或同一個(gè)問(wèn)題進(jìn)行發(fā)散思維訓(xùn)練,對(duì)于散亂的知識(shí)點(diǎn)進(jìn)行集中總結(jié)。教學(xué)中教師應(yīng)結(jié)合教材內(nèi)容,從新知與舊知、本類與它類、縱向與橫向等方面引導(dǎo)學(xué)生展開(kāi)聯(lián)想,弄清知識(shí)之間的聯(lián)系,拓寬學(xué)生的知識(shí)面,開(kāi)拓學(xué)生的思維。例如通過(guò)一題多變、一題多解等形式體現(xiàn)數(shù)學(xué)邏輯的分析、綜合、歸納、推理的內(nèi)容,激勵(lì)學(xué)生動(dòng)手、動(dòng)腦,培養(yǎng)學(xué)生主動(dòng)探索、善于發(fā)現(xiàn)的科學(xué)精神、合作交流的精神和創(chuàng)新意識(shí)。所以訓(xùn)練學(xué)生的思維,必須重視抽象思維的發(fā)展,并重視形象思維的發(fā)展和深化。在教學(xué)中創(chuàng)新性思維能力的培養(yǎng),還需要我們不斷探索、總結(jié)和研究,才能取得好的效果。集中性思維和發(fā)散性思維二者相輔相成,要培養(yǎng)學(xué)生的創(chuàng)新意識(shí)應(yīng)將兩者進(jìn)行有機(jī)結(jié)合,才能發(fā)揮效用。

三、結(jié)束語(yǔ)

總的來(lái)說(shuō),創(chuàng)新理念呼喚教師的激情,創(chuàng)新理念呼喚課堂教學(xué)的創(chuàng)新。學(xué)生創(chuàng)新能力的培養(yǎng)有很多方面,需要教師合理引導(dǎo),更不斷創(chuàng)新,才能找到最好的教學(xué)方法。同時(shí)在初中數(shù)學(xué)教學(xué)中教師要解放思想,緊跟潮流,大膽改革,努力探索,為學(xué)生提供創(chuàng)新的空間。只有不斷地創(chuàng)新教學(xué)模式,注重培養(yǎng)學(xué)生的創(chuàng)新思維和創(chuàng)新能力,為學(xué)生提供足夠的思考、想象與創(chuàng)造的時(shí)間和空間,才能讓學(xué)生由學(xué)會(huì)走向會(huì)學(xué),成為適應(yīng)社會(huì)發(fā)展需求的創(chuàng)新型人才。

參考文獻(xiàn):

[1]邱瓊.新課標(biāo)下初中數(shù)學(xué)創(chuàng)新性教學(xué)的實(shí)驗(yàn)研究[D].福建師范大學(xué),2006.