公務(wù)員期刊網(wǎng) 論文中心 正文

計(jì)算機(jī)下英語(yǔ)文獻(xiàn)翻譯方法淺議

前言:想要寫(xiě)出一篇引人入勝的文章?我們特意為您整理了計(jì)算機(jī)下英語(yǔ)文獻(xiàn)翻譯方法淺議范文,希望能給你帶來(lái)靈感和參考,敬請(qǐng)閱讀。

計(jì)算機(jī)下英語(yǔ)文獻(xiàn)翻譯方法淺議

1引言

計(jì)算機(jī)領(lǐng)域的權(quán)威文獻(xiàn)和技術(shù)資料多以英文版本提供。我國(guó)要學(xué)習(xí)借鑒國(guó)外的先進(jìn)方法和經(jīng)驗(yàn),以加強(qiáng)在該領(lǐng)域的研究和發(fā)展,文獻(xiàn)的漢譯以及對(duì)翻譯方法的研究至關(guān)重要。但是,國(guó)內(nèi)對(duì)該領(lǐng)域英語(yǔ)文獻(xiàn)的研究相對(duì)較少,翻譯研究空間很大。本文將以計(jì)算機(jī)領(lǐng)域的經(jīng)典暢銷(xiāo)書(shū)DeepLearning[1]為例,著重論述該領(lǐng)域英語(yǔ)文獻(xiàn)的詞句特征及翻譯。

2計(jì)算機(jī)領(lǐng)域英語(yǔ)文獻(xiàn)的詞句特征

計(jì)算機(jī)領(lǐng)域的英語(yǔ)文獻(xiàn)因其內(nèi)容、使用域及語(yǔ)篇功能的特殊性,在詞匯和句法層面形成了獨(dú)特的語(yǔ)言特征,即用詞準(zhǔn)確明晰、句法邏輯嚴(yán)密、表達(dá)力求客觀以及行文簡(jiǎn)潔流暢等。

2.1術(shù)語(yǔ)特征

術(shù)語(yǔ)是某一學(xué)科領(lǐng)域所特有的詞匯,是語(yǔ)言的基礎(chǔ)。要想正確理解和傳遞句子或篇章的意義,術(shù)語(yǔ)是極其重要的分析對(duì)象。李亞舒教授認(rèn)為,翻譯實(shí)踐中譯文質(zhì)量與術(shù)語(yǔ)掌握及術(shù)語(yǔ)規(guī)范等問(wèn)題密不可分[2]。筆者整合、分析了DeepLearning一書(shū)中Index部分以及Github網(wǎng)站[3]上共1324個(gè)計(jì)算機(jī)領(lǐng)域的術(shù)語(yǔ),結(jié)果如表1和圖1所示。由表1和圖1可知,該領(lǐng)域英語(yǔ)術(shù)語(yǔ)中包含大量的復(fù)合詞、縮略詞和派生詞[4]。復(fù)合詞包括合寫(xiě)式、分寫(xiě)式和連字符式。其中分寫(xiě)式復(fù)合詞占比最多,如Bayeserror、weightspacesym⁃metry等,其次是以連字符相連的復(fù)合詞,如curve-fitting、fixed-pointarithmetic等,占比最小的是合寫(xiě)式復(fù)合詞,如feedback、ei⁃genvector等;此外,術(shù)語(yǔ)中也會(huì)頻繁出現(xiàn)以首字母或主干語(yǔ)素構(gòu)成的縮略詞,如LSTM、CNN等;以及在原有詞根或單詞基礎(chǔ)上增加詞綴而構(gòu)成的派生詞,如agent、homogeneous等。無(wú)論是復(fù)合詞、縮略詞還是派生詞,都是以最為準(zhǔn)確、簡(jiǎn)潔、直觀的方式傳遞術(shù)語(yǔ)豐富而復(fù)雜的專(zhuān)業(yè)內(nèi)涵,體現(xiàn)了術(shù)語(yǔ)的規(guī)范性、簡(jiǎn)明性和專(zhuān)業(yè)性的特征。

2.2句法特征

英語(yǔ)中的完全句按其結(jié)構(gòu)形式可分為簡(jiǎn)單句和復(fù)合句[4]。簡(jiǎn)單句只包含一個(gè)主謂結(jié)構(gòu),且各句子成分均由詞組組成;復(fù)合句由兩個(gè)或兩個(gè)以上的分句組成,層次清楚、多層遞進(jìn)、前呼后擁、嚴(yán)密規(guī)范[5]。筆者對(duì)DeepLearning一書(shū)中Chapter1(Introduction)和Chapter2(LinearAlgebra)兩部分共700個(gè)句子——其中既有對(duì)概念的論述,又有對(duì)基本的數(shù)學(xué)工具的描寫(xiě)——進(jìn)行分析,得到如表2和圖2所示結(jié)果:由表2和圖2可知,在計(jì)算機(jī)領(lǐng)域英語(yǔ)文獻(xiàn)中,(1)結(jié)構(gòu)較為復(fù)雜的長(zhǎng)難句較多;(2)主從句結(jié)構(gòu)較多,主句與起修飾作用的從屬結(jié)構(gòu)相互獨(dú)立[6];(3)從屬結(jié)構(gòu)多樣且出現(xiàn)頻率較高;(4)被動(dòng)語(yǔ)態(tài)使用頻繁,著重描述客觀事實(shí)、進(jìn)程與結(jié)果[7];(5)連詞、介詞等虛詞使用較多等。因此,該領(lǐng)域英語(yǔ)呈現(xiàn)句法結(jié)構(gòu)復(fù)雜、表達(dá)正式客觀、句法邏輯嚴(yán)密以及措辭結(jié)構(gòu)嚴(yán)謹(jǐn)?shù)奶攸c(diǎn),也可概括為句法的復(fù)雜性、客觀性及嚴(yán)謹(jǐn)性。

3計(jì)算機(jī)領(lǐng)域英語(yǔ)文獻(xiàn)的詞句翻譯

計(jì)算機(jī)領(lǐng)域英語(yǔ)文獻(xiàn)是關(guān)于信息、知識(shí)、觀點(diǎn)的交流,注重作者的思維過(guò)程[8],涉及內(nèi)容豐富且思想深刻,文字簡(jiǎn)樸,邏輯性強(qiáng)。

3.1術(shù)語(yǔ)的翻譯

隨著計(jì)算機(jī)領(lǐng)域課題研究的逐漸廣泛且深入,出現(xiàn)了許多新的術(shù)語(yǔ)。這些術(shù)語(yǔ)通常以復(fù)合詞、縮略詞或派生詞等形式存在,關(guān)涉專(zhuān)業(yè)知識(shí)的傳播與積淀。在術(shù)語(yǔ)的翻譯過(guò)程中,譯者必須要秉持嚴(yán)謹(jǐn)?shù)膽B(tài)度,深刻把握術(shù)語(yǔ)規(guī)范、簡(jiǎn)明與專(zhuān)業(yè)的文體特征,將規(guī)范統(tǒng)一作為翻譯的第一要義,將專(zhuān)業(yè)知識(shí)的充分表達(dá)作為翻譯的核心,將簡(jiǎn)潔明了作為翻譯的基本要求,并將“現(xiàn)有譯法”和“找譯譯法”[9]的術(shù)語(yǔ)翻譯方法作為翻譯的根本方法。3.1.1現(xiàn)有譯法?!艾F(xiàn)有譯法”是指:對(duì)新產(chǎn)生的、不熟悉的術(shù)語(yǔ),查閱相關(guān)中文文獻(xiàn)后,若未找到已存在、并與之相對(duì)應(yīng)的漢語(yǔ)術(shù)語(yǔ),則可以采用直譯、意譯、音譯[10]和轉(zhuǎn)寫(xiě)(移譯)等“現(xiàn)有譯法”進(jìn)行翻譯,即對(duì)英語(yǔ)術(shù)語(yǔ)概念的再命名。譯文同樣應(yīng)做到準(zhǔn)確、規(guī)范且簡(jiǎn)潔,并傳遞出完整的專(zhuān)業(yè)信息。表3簡(jiǎn)要概述了“現(xiàn)有譯法”的基本實(shí)現(xiàn)方式并舉例。直譯、意譯、音譯以及轉(zhuǎn)寫(xiě)的術(shù)語(yǔ)翻譯方法,都是在特定語(yǔ)境下,從分析術(shù)語(yǔ)原意出發(fā),以充分、準(zhǔn)確、規(guī)范地表達(dá)術(shù)語(yǔ)原意為歸宿[11]:直譯以形式與內(nèi)容的一致為目標(biāo);意譯改變形式,忠實(shí)再現(xiàn)原文內(nèi)容;音譯和轉(zhuǎn)寫(xiě)看似沒(méi)有翻譯,但從深層次講,其包含了英語(yǔ)術(shù)語(yǔ)的全部含義,是最為精確的翻譯[12]?!艾F(xiàn)有譯法”實(shí)現(xiàn)了英漢術(shù)語(yǔ)在概念內(nèi)涵和語(yǔ)用效果上的最大等值,保證了術(shù)語(yǔ)的規(guī)范性、專(zhuān)業(yè)性與簡(jiǎn)明性,提高了術(shù)語(yǔ)的翻譯質(zhì)量。3.1.2找譯譯法?!罢易g譯法”是指:對(duì)新產(chǎn)生的術(shù)語(yǔ),經(jīng)過(guò)查閱相關(guān)中文文獻(xiàn)和技術(shù)資料,“找”到了與之相對(duì)應(yīng)的漢語(yǔ)術(shù)語(yǔ),則可直接“拿來(lái)”[13];而非采用“現(xiàn)有譯法”進(jìn)行再翻譯、再命名?!罢易g譯法”也是從術(shù)語(yǔ)原意出發(fā),以準(zhǔn)確表達(dá)術(shù)語(yǔ)原意為歸宿,在特定語(yǔ)境下,通過(guò)專(zhuān)業(yè)判定法、定義比對(duì)法、逐個(gè)排除法、詞義推敲法等方法,“找”到與英語(yǔ)術(shù)語(yǔ)相對(duì)應(yīng)的漢語(yǔ)術(shù)語(yǔ)。例1:Sentimentanalysis情感分析Sentiment在英語(yǔ)中是多義詞,譯為“感情”“主題”“觀點(diǎn)”等。采用“現(xiàn)有譯法”,可直譯為“主題分析”“觀點(diǎn)分析”,也可意譯為“意見(jiàn)挖掘”等。但這些都不能準(zhǔn)確地傳遞該術(shù)語(yǔ)的內(nèi)涵。依據(jù)Techopedia對(duì)Sentimentanalysis的定義:atypeofdataminingthatmeasurestheinclinationofpeople'sopinionsthroughnaturallanguageprocessing,computationallinguisticsandtextanal⁃ysis(一種數(shù)據(jù)挖掘類(lèi)型,它通過(guò)自然語(yǔ)言處理、計(jì)算語(yǔ)言學(xué)和文本分析來(lái)衡量人們的意見(jiàn)傾向),選擇原語(yǔ)術(shù)語(yǔ)的主要含義,即“衡量人的意見(jiàn)及態(tài)度”,根據(jù)定義比對(duì)法,故而我們?cè)跐h語(yǔ)中找到其對(duì)應(yīng)詞“情感分析”,作為Sentimentanalysis的漢語(yǔ)譯文。例2:GameTheory博弈論與例1類(lèi)似,若采用“現(xiàn)有譯法”,可直譯為“游戲理論”。但依據(jù)Wikipedia對(duì)Gametheory的定義:thestudyofmathemati⁃calmodelsofconflictandcooperationbetweenrationaldecision-makers(研究理性決策者之間沖突與合作的數(shù)學(xué)模型),利用逐個(gè)排除法,因原語(yǔ)術(shù)語(yǔ)表現(xiàn)的“沖突與合作”不局限于“游戲”,更是涵蓋了一種“競(jìng)爭(zhēng)模型”,故排除“游戲理論”的譯法。又因在中國(guó),博弈論思想古已有之,“博弈論”中的“博弈”精確刻畫(huà)了參與者之間的競(jìng)爭(zhēng)與沖突關(guān)系。于是根據(jù)定義比對(duì)法,最終將Gametheory譯為“博弈論”。通過(guò)“找譯譯法”得到的漢語(yǔ)術(shù)語(yǔ),已在漢語(yǔ)語(yǔ)境下約定俗成并廣為使用,將其作為英語(yǔ)術(shù)語(yǔ)的譯名,不僅含義準(zhǔn)確,而且更易于為漢語(yǔ)讀者理解和接受,由此也實(shí)現(xiàn)了英語(yǔ)術(shù)語(yǔ)與漢語(yǔ)術(shù)語(yǔ)在概念意義和語(yǔ)用效果上的最大等值轉(zhuǎn)換。

3.2句子的翻譯

計(jì)算機(jī)領(lǐng)域英語(yǔ)文獻(xiàn)因其內(nèi)容極其龐雜,加之英語(yǔ)本身注重結(jié)構(gòu)形式規(guī)范,因此句子呈現(xiàn)復(fù)雜性、客觀性以及嚴(yán)謹(jǐn)性的特點(diǎn)。在翻譯過(guò)程中,譯者應(yīng)深刻把握上述語(yǔ)言特征,對(duì)具體的語(yǔ)言現(xiàn)象做具體、動(dòng)態(tài)、多角度的分析,并按照漢語(yǔ)的表達(dá)習(xí)慣和邏輯順序進(jìn)行翻譯。3.2.1理清關(guān)系,增加連詞。英語(yǔ)中從屬結(jié)構(gòu)根據(jù)其句法功能可分為名詞性從屬結(jié)構(gòu)、形容詞性從屬結(jié)構(gòu)及副詞性從屬結(jié)構(gòu)。其中副詞性從屬結(jié)構(gòu)通常由介詞詞組、非謂語(yǔ)動(dòng)詞和狀語(yǔ)從句等構(gòu)成,由介詞、關(guān)系副詞等與主句分開(kāi)來(lái),從而使句子有主有次、層次分明。翻譯時(shí),應(yīng)先理清從屬結(jié)構(gòu)與主句之間的邏輯關(guān)系[14],增加相應(yīng)連詞,將其與主句結(jié)構(gòu)共同構(gòu)成漢語(yǔ)的因果復(fù)句、條件復(fù)句、讓步復(fù)句等。在符合漢語(yǔ)表達(dá)習(xí)慣的前提下,盡量體現(xiàn)原文的從屬關(guān)系。例:①Despitetheirpopularity,②symbolicmodelsweredifficulttoexplainintermsofhowthebraincouldactuallyimplementthemusingneurons.[1]譯文:盡管符號(hào)模型比較常用,但卻難以解釋大腦如何真正使用神經(jīng)元實(shí)現(xiàn)推理功能。分析:該句中①與②之間為讓步與轉(zhuǎn)折的關(guān)系,翻譯時(shí)應(yīng)增加相應(yīng)連詞進(jìn)行連接,在一定程度上體現(xiàn)了與主句間的主次關(guān)系,層次清楚、簡(jiǎn)潔流暢。3.2.2語(yǔ)態(tài)轉(zhuǎn)換,化被動(dòng)為主動(dòng)。英語(yǔ)重分析、講客觀,常常因?yàn)槭┦碌牟恍枰虿豢赡苤该?,或出于形合的句法要求以及信息性文體的考慮等,大量使用被動(dòng)句;而漢語(yǔ)重整體、講主觀圓融,不注重分清施事與受事、主動(dòng)與被動(dòng),大量使用主動(dòng)句表達(dá)被動(dòng)意義[5]。翻譯時(shí),若英語(yǔ)被動(dòng)句是出于上述原因使用,則應(yīng)根據(jù)漢語(yǔ)的表達(dá)習(xí)慣,將其譯為主動(dòng)句。例1:TheL2normisusedsofrequentlyinmachinelearning圖2計(jì)算機(jī)領(lǐng)域英語(yǔ)文獻(xiàn)的句法特征thatitisoftendenotedsimplyas||x||,withthesubscript2omitted.[1]譯文:L2范數(shù)在機(jī)器學(xué)習(xí)中出現(xiàn)極其頻繁,常略去下標(biāo)2,簡(jiǎn)化表示為||x||。例2:ItisalsocommontomeasurethesizeofavectorusingthesquaredL2normwhichcanbecalculatedsimplyasx⊤x.[1]譯文:平方L2范數(shù)可以簡(jiǎn)單地通過(guò)點(diǎn)積x⊤x計(jì)算,常用來(lái)衡量向量的大小。分析:例1和例2著重描述(平方)L2范數(shù)的性質(zhì)、應(yīng)用及書(shū)寫(xiě)樣式。句中三個(gè)被動(dòng)形式,僅是出于信息性文體敘述客觀、嚴(yán)謹(jǐn)[15]的需要,并不強(qiáng)調(diào)被動(dòng)意義,因此翻譯時(shí)應(yīng)譯為漢語(yǔ)的主動(dòng)句。3.2.3先因后果,語(yǔ)序調(diào)整漢語(yǔ)行文注重時(shí)間因素,即先發(fā)生的先說(shuō),后發(fā)生的后說(shuō),句式表達(dá)往往是先因后果;而英語(yǔ)可以先因后果,也可以先果后因。如果英語(yǔ)長(zhǎng)句的邏輯順序與表達(dá)次序與漢語(yǔ)行文習(xí)慣不一致,甚至完全相反時(shí)[16],翻譯時(shí)就需要適當(dāng)?shù)卣{(diào)整語(yǔ)序。例:①Theproblemofdeterminingthecapacityofadeeplearningmodelisespeciallydifficult②becausetheeffectivecapac⁃ityislimitedbythecapabilitiesoftheoptimizationalgorithm,③andwehavelittletheoreticalunderstanding/oftheverygeneralnon-convexoptimizationproblemsinvolvedindeeplearning.[1]譯文:因?yàn)橛行萘渴芟抻趦?yōu)化算法的能力,所以很難確定深度學(xué)習(xí)模型的容量。而且對(duì)于深度學(xué)習(xí)中的一般非凸優(yōu)化問(wèn)題,理論分析很少。分析:該句中①為結(jié)果,②為原因;③中介詞“of”之前為評(píng)論,后為事實(shí)。原文的邏輯表達(dá)次序與漢語(yǔ)的行文習(xí)慣不一致,所以應(yīng)進(jìn)行語(yǔ)序的調(diào)整,先原因后結(jié)果,先事實(shí)后評(píng)論,得出上述譯文。3.2.4邏輯梳理,形意轉(zhuǎn)換。英語(yǔ)為形合式語(yǔ)言,強(qiáng)調(diào)邏輯理性,語(yǔ)法意義和邏輯關(guān)系通常以詞的形態(tài)變化、語(yǔ)序和虛詞來(lái)表達(dá),句子冗長(zhǎng)卻不致流散;而漢語(yǔ)為意合式語(yǔ)言,強(qiáng)調(diào)直覺(jué)領(lǐng)悟,語(yǔ)法意義和邏輯關(guān)系常常隱含在字里行間,句式流散但形散神聚。翻譯英語(yǔ)長(zhǎng)句時(shí),應(yīng)首先進(jìn)行語(yǔ)義邏輯的梳理,若句子成分之間的關(guān)系并不密切,或具有相對(duì)獨(dú)立性[16],則可按漢語(yǔ)的表達(dá)習(xí)慣,將“形合”的英語(yǔ)譯為“意合”的漢語(yǔ)。例:①Themostimportantresultsinstatisticallearningtheoryshowthat②thediscrepancybetweentrainingerrorandgeneraliza⁃tionerror/isboundedfromabove③byaquantitythatgrowsasthemodelcapacitygrowsbutshrinksasthenumberoftrainingexam⁃plesincreases.[1]譯文1:統(tǒng)計(jì)學(xué)習(xí)理論中最重要的結(jié)論闡述了訓(xùn)練誤差和泛化誤差之間差異的上界隨著模型容量增長(zhǎng)而增長(zhǎng),但隨著訓(xùn)練樣本增多而下降。[17]譯文2:統(tǒng)計(jì)學(xué)習(xí)理論中最重要的結(jié)論是:訓(xùn)練誤差和泛化誤差之間差異的上界,隨著模型容量增長(zhǎng)而增長(zhǎng),但隨著訓(xùn)練樣本增多而下降。分析:譯文1未進(jìn)行邏輯梳理,僅按照原文的表達(dá)次序直接進(jìn)行了翻譯,雖然基本傳達(dá)了原文的內(nèi)容,但顯得局促、不自然;而譯文2則考慮到②與①、②與③以及③中的兩個(gè)并列分句之間,雖有連接詞相連,但意義相對(duì)獨(dú)立,于是將原文化整為零,實(shí)現(xiàn)了形意轉(zhuǎn)換。相比之下,譯文2邏輯更合理,句子更連貫,語(yǔ)義更清楚,更符合漢語(yǔ)形散神不散的特點(diǎn)。

4結(jié)束語(yǔ)

基于計(jì)算機(jī)領(lǐng)域的英文文獻(xiàn)翻譯方法探究,從分析文獻(xiàn)術(shù)語(yǔ)和句法的語(yǔ)言特征出發(fā),以譯文規(guī)范性為翻譯原則,有針對(duì)性地提出了行之有效的翻譯方法。同時(shí),以文獻(xiàn)內(nèi)容為起始,以準(zhǔn)確傳達(dá)文獻(xiàn)內(nèi)容為歸宿的翻譯研究方法,不僅簡(jiǎn)明、客觀、規(guī)范地傳遞了專(zhuān)業(yè)信息,提高了譯文質(zhì)量,同時(shí)也為同類(lèi)文本的翻譯研究提供了借鑒。

作者:李成明 康雁雁 聶國(guó)慶 單位:山東科技大學(xué)外國(guó)語(yǔ)學(xué)院 山東科技大學(xué)計(jì)算機(jī)科學(xué)與工程學(xué)院