前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的數(shù)學邏輯思維能力主題范文,僅供參考,歡迎閱讀并收藏。
首先,邏輯思維是借助于概念、判定、推理等思維形式所進行的一項思考活動,是一種有條件、有步驟、有根據(jù)、漸進式的思維方式方法,也是小學生學習數(shù)學與運用數(shù)學的能力的核心。因此,在小學數(shù)學課堂教學中引導小學生有條件、有步驟、有根據(jù)、漸進式的思維方式尤為重要!比如,在教學一年級“人民幣的認識”時,對元、角單位概念的教學,我預(yù)設(shè)這樣一個情景:一個天氣炎熱的中午,小明到學校的小賣部買一個冰激凌:已知每個冰激凌五角錢,小明給售貨員阿姨一元錢!售貨員阿姨給小明找回多少錢?通過這樣一個簡單的生活經(jīng)驗,學生自然的得出:一元就是兩個五角?。?元=5角+5角)兩個5角就是10角!10角就是1元!從而引出1元等于10角的概念(1元=10角)!這樣有條件、有步驟、有根據(jù)、漸進式的思維方式就是邏輯思維推理!是順藤摸瓜的清晰脈絡(luò)教學方法!這種順向的思維模式不僅易于學生的理解、易于識記!而且有助于培養(yǎng)小學生循序漸進的嚴謹思維程序!
其次,邏輯思維能力是指正確、合理思考的能力。即對事物進行觀察、比較、分析、綜合、抽象、概括、判斷、推理的能力,采用科學的邏輯思維方法,準確而有條理地表達自己思維過程的能力。它與形象思維能力截然不同。邏輯思維能力不僅是學好數(shù)學必須具備的能力,也是學好其他學科的前提基礎(chǔ)及處理日常生活問題所必須具備的知識能力。是對知識的理解、掌握到運用的升華!是分析問題、解決問題的根本因素!
然而,數(shù)學知識是用數(shù)量關(guān)系、包括空間形式來反映客觀世界的一門學科,其邏輯性很強、很嚴密。那么,如何培養(yǎng)小學生采用科學的邏輯思維方法準確而有條理地表達自己思維過程的能力呢?教學中教師應(yīng)做到:一是要重視對學生思維過程的組織;二是要重視對學生思維能力的培養(yǎng);三是要重視對學生尋求正確思維方向的訓練;四是要重視對學生良好思維品質(zhì)的培養(yǎng)。根據(jù)思維是人腦的機能、特性和產(chǎn)物,是人腦對于客觀事物的間接地、概括地反映。以及思維推理的不同,我們將邏輯思維分為直接推理和間接推理!也就是我們常說的順向思維和逆向思維!即順向思維方式是以問題的某一條件與某一答案的聯(lián)系為基礎(chǔ)進行的,即在思維時直接利用已有的條件,通過概括和推理得出正確結(jié)論,其方向只集中于某一個方面,對問題只尋求一種正確答案;逆向思維與順向性思維方法相反,逆向性思維是從問題出發(fā),尋求與問題相關(guān)聯(lián)的條件,將只從一個方面起作用的單向聯(lián)想,變?yōu)閺膬蓚€方面起作用的雙向聯(lián)想的思維方法。但無論是順向思維推理還是逆向思維推理都應(yīng)遵循:
一、邏輯思維能力的學科特點
我們不但要培養(yǎng)學生對所學的內(nèi)容進行初步的比較、分析、綜合、抽象、概括、對簡單的問題進行判斷、推理。同時還要注意思維的敏捷和靈活的運用。數(shù)學教學是數(shù)學思維活動的教學,而不僅是數(shù)學活動的結(jié)果,即數(shù)學知識的教學,數(shù)學教育的任務(wù)是形成那些具有數(shù)學思維特點的智力活動結(jié)構(gòu)。數(shù)學的這些特點和數(shù)學教學的任務(wù),使得數(shù)學教學在培養(yǎng)學生邏輯思維能力方面,較之其它學科占有更重要的地位。同時,培養(yǎng)學生初步的邏輯思維能力,數(shù)學教材具有優(yōu)越的條件,數(shù)學本身具有抽象性、嚴密性和應(yīng)用的廣泛性等特征。數(shù)學教師在數(shù)學課堂教育教學中應(yīng)肩負著引導、培養(yǎng)、深化學生對邏輯思維推理理念認識的重大責任。
二、邏輯思維的導向性特點
在教育教學中邏輯思維具有多向性。一般來說,邏輯思維具有:順向性、逆向性、橫向性及散向性。培養(yǎng)學生邏輯思維的能力,不僅要使學生認識思維的方向性,更要指導學生尋求正確思維方向的科學方法。同時,培養(yǎng)學生思維能力既要求教師為學生提供豐富的感性材料,又要求教師對大量的感性材料進行精心設(shè)計和巧妙安排,從而使學生順利實現(xiàn)由感知思維向抽象思維這一邏輯思維推理的轉(zhuǎn)化。比如:在教學中如何求圓的面積?引導學生如何把圓轉(zhuǎn)化成長方形或正方形,從而得出:長方形的長等于圓周長的一半(лr),長方形的寬等于圓的半徑(r),自然推出圓的面積公式:S=лr X r=лr2; 又如求圓柱的表面積公式:引導學生得出圓柱的表面積就是一個側(cè)面積加上兩個底面積!即用公式表示:S=2лrh+2лr2;這樣根據(jù)邏輯思維推理中的順向性思維得出的導向公式概念,并不是意味著是問題解決的升華!我們還應(yīng)在教育教學中積極組織和引導學生邏輯思維推理能力中的散向性思維!在尋求正確思維方向的科學方法的同時,延伸歸納推出:S=2лr X(h+r)。這樣不僅培養(yǎng)了學生的化歸整理的原則,在某種程度,某種意義上達到了化難解易的導向目的!
三、邏輯思維靈活運用的特點
一、提出問題進行補充條件的練習。
簡單應(yīng)用題一般都有兩個已知條件和一個問題。這種形式的練習的具體做法是:提出一個問題,要求學生補出必須具備的兩個條件,而且補出的條件的數(shù)據(jù)要合理。
二、根據(jù)已知條件提出多個問題的練習。
例如結(jié)合已知條件:“同學們參加搬磚勞動,五年級5個班,每班搬磚650塊,四年級4個班,每班搬磚596塊”。在教師啟發(fā)下,同學們提出了這樣9個問題:
1、一共有幾個班參加勞動?
2、五年級共搬了幾塊磚?
3、四年級共搬了幾塊磚?
4、四、五年級一共搬了幾塊磚?
5、五年級比四年多搬了幾塊磚?
5、四年級比五年級少搬幾塊磚?
7、五年級與四年級每班相差幾塊?
8、四、五年級9個班平均每班搬幾塊?
9、四年級再搬多少塊就和五年級搬的同樣多?
以上兩種形式的練習能夠幫助學生初步應(yīng)用分析、綜合的邏輯思維的方法,掌握初步的邏輯推理。第二種形式的練習還能發(fā)展學生的發(fā)散思維,培養(yǎng)學生思維的靈活性。
三、根據(jù)應(yīng)用題的條件和問題,設(shè)計一系列問題,進行口述練習。
解答應(yīng)用題的關(guān)鍵是解題思路。最常用的解題思路有分析法和綜合法。本人在復合應(yīng)用題的教學中分別由從問題出發(fā)推想到已知條件的逆推思路與從已知條件出發(fā)推想到問題的順推思路,設(shè)計一系列問題,讓學生進行口述練習,幫助學生學會用分析法和綜合法解題,初步掌握邏輯推理。實踐證明,這種練習能獲得較好的效果。
例如:“中心小學二年級有4個班,每班40人,三年級有3個班,每班36人,二、三年級一共有多少人?”
用分析法來分析,提出以下問題請學生回答。
“這道題要我們求的問題是什么?”
“要求二、三年級一共有多少人,需要知道哪兩個條件?”
“二、三年級各有多少人,題目有沒有直接告訴?”
“從題目的已知數(shù)中能算出二年級有多少人嗎?根據(jù)哪兩個條件可以算出?”
“三年級有多少人怎樣算呢?”
“這道題要先算什么,后算什么?”
作綜合法來分析,提出下列問題請學生回答。
“這道題告訴我們哪些條件?”
“知道二年級有4個班,每班40人,可以求出什么?”
“知道三年級有3個班,每班36人,可以求出什么?”
“知道了二、三年級各有多少人后,可以求出什么?”
“這道題應(yīng)先算什么,后算什么?”
四、給出一些有多余條件的應(yīng)用題,讓學生根據(jù)問題正確地選用已知條件。
這一類型的練習,不但可以促使學生更好地理解數(shù)量之間的依存關(guān)系,而且還可以提高學生比較、判斷能力。
例如:一支鉛筆的價錢是2角,一塊橡皮擦的價錢的6分,一個鉛筆刨子的價錢是3角,一瓶墨水的價錢是1元2角,一支鋼筆的價錢是3元8角。問:
1、買一支鋼筆與一個鋼筆刨子要多少錢?
2、買3支鋼筆與一塊橡皮擦要多少錢?
3、買一支鋼筆與一瓶墨水要多少錢?
4、買一瓶墨水比買3支鋼筆多多少錢?
5、買一個鉛筆刨子的錢可買幾塊橡皮擦?
五、根據(jù)式題編造文字題的練習。
例如:式題248÷4=62從意義上來編造的文字題有:
1、把248平均分成4份,每份是多少?
2、248里面有幾個4?
3、248是4的幾倍?
從術(shù)語上來編造的文字題有:
1、被除數(shù)是248,除數(shù)是4,商是多少?
2、除數(shù)是4,被除數(shù)是248,商是幾?
3、已知兩個數(shù)的積是248與其中一個因數(shù)是4,求另一個因數(shù)是多少?
從讀法上來編造的文字題有:
1、248除以4得多少?
2、4除248是多少?
3、248與4的商是多少?
通過這種形式的練習,學生不但進一步理解除數(shù)、被除數(shù)、商的概念,弄清它們之間的關(guān)系,而且還掌握初步的抽象、概括思維方法。
除了以上介紹的幾種形式的練習外,經(jīng)常讓學生進行“一題多解”、“一題多變”的練習。這些類型的練習,有利于拓寬學生思路,培養(yǎng)學生的思維的靈活性和敏捷性。在小學數(shù)學教學中,在培養(yǎng)學生的初步邏輯思維能力的同時,應(yīng)注意發(fā)展學生的非邏輯思維,使學生在小學階段就能形成良好的思維品質(zhì)。
關(guān)鍵詞:初中數(shù)學;邏輯思維能力;培養(yǎng)策略
邏輯思維是指離開具體的形象,在一定的邏輯法則中進行思維的能力。數(shù)學是思維的體現(xiàn),它具有應(yīng)用廣泛、邏輯嚴密、結(jié)論確定等多方面特點,每一個數(shù)學的概念與定理,只有在邏輯上被嚴格證明以后,才能最終在數(shù)學理論體系中成立。正是由于數(shù)學教育所具有的上述特點,因此在初中數(shù)學教學中更應(yīng)當強調(diào)邏輯思維的培養(yǎng),以促進學生知識與能力的共同發(fā)展,促進學生更勤于動腦、善于思考,實現(xiàn)學生數(shù)學素養(yǎng)與學科應(yīng)用能力的全面提升。
一、夯實數(shù)學基礎(chǔ),重視基礎(chǔ)知識教學
數(shù)學概念、定理等基礎(chǔ)知識,既是數(shù)學知識體系中的重要基石,也是學生開展判斷、分析、推理等思維活動的起點,是學生得以有效解決各類數(shù)學問題的重要工具??梢哉f,學生如果沒有正確地掌握概念、定理等基礎(chǔ)知識,就不可能形成正確的邏輯思維活動,也更談不上邏輯思維能力的培養(yǎng)與發(fā)展。因此,在初中數(shù)學教學中,必須將概念、定理的教學放在重要地位,并通過讓學生準確理解數(shù)學概念,充分揭示數(shù)學原理的內(nèi)涵與外延,以實現(xiàn)學生思維能力的良好形成與發(fā)展。
例如,在《認識一元一次方程》的教學中,筆者一方面在課堂中采用學生自主學習、小組探討、教師講授等多種教學方法,讓學生親自通過觀察、概括、類比與歸納等邏輯思維活動,以得出一元一次方程及方程解的相關(guān)概念;另一方面,還可通過提出具有一定針對性、趣味性和邏輯性的相關(guān)問題引發(fā)學生思考,讓學生在具有條理性、邏輯性的思考過程中進一步強化對相關(guān)知識的理解與掌握??偠灾?,基礎(chǔ)知識教育與邏輯思維培養(yǎng)之間是相互促進、相互發(fā)展的,在向?qū)W生教導概念、定理等知識的同時,可以良好地培養(yǎng)學生的思維能力;同樣,在形成與發(fā)展學生邏輯思維的過程中,也能加深學生對相關(guān)知識的掌握程度。
二、引導自主探索,參與邏輯思維活動
教師應(yīng)根據(jù)初中數(shù)學的教學目標與學習規(guī)律,積極引導學生開展自主探索。通過多讓學生親自觀察與思考,多讓學生實踐練習與動手操作,多讓學生自主抽象概括出數(shù)學公式與法則,這都有利于學生主動參與到邏輯思維活動當中,在獲取數(shù)學知識、鍛煉數(shù)學技能的同時,也實現(xiàn)了學生邏輯思維的有效形成與發(fā)展,進而推動學生知識學習與能力提高兩者之間有機的結(jié)合,并相互促進、相互發(fā)展。
例如,在《一元一次不等式》的教學中,有這樣一道例題:a、b∈R+,a≠b,求證:a3+b3>a2b+ab2。為了使學生在順利解題的過程中,有效培養(yǎng)與鍛煉邏輯思維能力,筆者設(shè)計了以下教學環(huán)節(jié):一是向?qū)W生講述如何利用邏輯思維中的分析思維、綜合思維來證明該不等式;二是引導學生進行自主探索,得出該不等式證明的具體步驟和過程;三是再進一步啟發(fā)學生思維,讓學生探索能否通過此題的證明,得出相關(guān)不等式證明的推廣應(yīng)用,例如可得出:a4+b4>a3b+ab3,a5+b5>a4b+ab4,…an+bn>an-1b+abn-1。通過以上教學環(huán)節(jié)的引導,不僅使學生在問題的解答過程中,親自進行觀察與思考,并自主概括出相P不等式證明的推廣應(yīng)用,而且有利于啟迪學生思維,讓學生的邏輯思維始終處于主動運轉(zhuǎn)的狀態(tài),有效促進思維能力的形成與發(fā)展。
三、教導思維方法,探索邏輯思維基本規(guī)律
學生思維能力的形成與發(fā)展,關(guān)鍵是應(yīng)教導正確的思維方法,以培養(yǎng)學生利用邏輯思維進行思考、解題與推理的能力。為此,在初中數(shù)學教學過程中,教師應(yīng)緊密結(jié)合教學目標與教學內(nèi)容,積極選擇適宜的邏輯思維方法開展教學,使學生不僅能了解各種方法的思維過程與邏輯推理格式,例如歸納法(三步格式)、反證法(三步格式)、分析法(逆推格式)、綜合法(順證格式)等等,而且還能熟練地用于數(shù)學知識論證與解題優(yōu)化,以促進自身思維能力的良好形成與發(fā)展。
例如,在《探索勾股定理》這一課程中,筆者就積極結(jié)合了歸納法開展教學,以培養(yǎng)學生的邏輯思維能力。一是在正式教學之前,分別向?qū)W生展示四個不同邊長的直角三角形,讓學生仔細觀察其特點,并計算出各三角形邊長的平方,這些圖形和計算數(shù)據(jù)都是基本的教學材料,既方便了學生的觀察與理解,又為下一步勾股定理結(jié)論的歸納奠定了良好的基礎(chǔ)。二是教師不要急于講述結(jié)論,可通過提出相關(guān)問題,如“直角三角形各邊長的平方之間存在什么關(guān)系?”“由此可得出什么結(jié)論?”等,以引導學生積極地探索與思考,盡可能地讓學生自主歸納得出勾股定理的結(jié)論與公式。總而言之,通過將歸納法融入教學環(huán)節(jié)中,既提高了學生數(shù)學學習的興趣,又幫助學生掌握了邏輯思維的基本規(guī)律,實現(xiàn)了邏輯思維能力的提升。
邏輯思維能力的形成與發(fā)展,是啟迪學生智慧,提高學生數(shù)學素養(yǎng)的關(guān)鍵所在。為此,教師應(yīng)積極通過夯實數(shù)學基礎(chǔ)、引導自主探索、教導思維方法等各種有效的教學策略,以實現(xiàn)學生思維能力的良好培養(yǎng),實現(xiàn)學生數(shù)學素養(yǎng)與學科應(yīng)用能力的全面提升。
參考文獻:
[1]康華明,章宏.初中數(shù)學學生邏輯思維的培養(yǎng)研究[J].佳木斯教育學院學報,2013(2):258.
【關(guān)鍵詞】數(shù)學教學 數(shù)學邏輯 勤學多練 素質(zhì)教育
中圖分類號:G4 文獻標識碼:A DOI:10.3969/j.issn.1672-0407.2017.11.144
數(shù)學教學是培養(yǎng)學生邏輯思維能力極為有力的場地。如何利用數(shù)學教學培養(yǎng)學生的邏輯思維能力,正愈來愈受到數(shù)學教師的高度重視。下面我結(jié)合教學體會談一些看法和做法。
一、提高學生學習數(shù)學的興趣是培養(yǎng)數(shù)學邏輯思維能力的前提
常言道:興趣是最好的老師。如何將學生的學習興趣與教師所要教授的內(nèi)容相結(jié)合,成為至關(guān)重要的一點。這就要求教師在授課時要盡量做到以下幾點:創(chuàng)設(shè)情景,為學生的想象提供根據(jù);巧設(shè)疑問,讓學生帶著問題思考;引發(fā)思維,將學生的想法拓展開來。
教師在課堂教學中,要充分利用教材和現(xiàn)實生活所提供的素材和資源,善于精心設(shè)計問題,把握好知識和思維的最近結(jié)合點,激發(fā)學生學習的興趣,引發(fā)學生求知的欲望,使得學生積極地動腦筋想辦法去探討和研究,從而主動的把知識熔入自己的思維進行提煉,激發(fā)思維潛能,有效地使學生的邏輯思維意向品質(zhì)逐步得到培養(yǎng)。
二、注重學生思維過程的教學培養(yǎng)數(shù)學邏輯思維能力的關(guān)鍵
教師在授課的過程中,如果讓學生所觸到的是一些看似確定無疑、不存在任何矛盾的“客觀真理”,那么學生在經(jīng)歷了教育過程后,也只是熟悉了一些現(xiàn)成結(jié)論,這對于學生數(shù)學能力的培養(yǎng)沒有任何幫助。遇到這樣的情況,首先教師應(yīng)先簡單向?qū)W生介紹相關(guān)公式,其次通過例證,讓學生經(jīng)歷公式及定理的推理過程,進而了解知識的形成,才能更好地培養(yǎng)學生的數(shù)學品質(zhì)。
三、注重學生演繹推理的訓練是培養(yǎng)數(shù)學邏輯思維能力的重要途徑
教師應(yīng)注重培養(yǎng)學生邏輯推理的綜合法和分析法,加強學生的推理論證訓練,通過幾何教學把學生引入邏輯推理的王國。
教師應(yīng)狠抓幾何語言訓練,要求學生理解和熟記幾何常用語,如“線段AB”、“AB∥CD”、“直線ABCD于O點”……逐字逐句的訓練,組織學生大聲朗讀、記憶,提高他們的口頭表達能力,規(guī)范幾何語言的書寫;要求學生由基本語句畫出圖形,把語句和圖形結(jié)合起來,訓練學生熟記語句,如“畫直線AC”、作∠ABC的角平分線,延長線段AB到D使BD=AB等;引導學生將定義、定理等畫出圖形,把符號語言與文字語言與圖形結(jié)合起來,有利于學生理解幾何概念的本質(zhì)屬性,也為文字證明打下基礎(chǔ)。
通過直線、射線、線段、角幾部分的教學來培養(yǎng)學生的判斷能力。要求學生在弄清定義的基礎(chǔ)上,通過圖形直觀能有根據(jù)地作出判斷,如“對頂角是相等的角”、“兩點確定一條直線”、“兩直線相交,只有一個交點”,等等。例如講直線這一概念時,問:你能畫一條完整的直線嗎?學生感到問題提的新鮮,誰不會畫直線呢!有些莫名其妙,教師指出:一個人從出生記事之日起,一直到老為止也畫不了一條完整的直線,因為直線是無限長的,正因為畫不了一條完整的直線,才用畫直線上的一段來表示直線,但決不止這么長!這樣學生在開頭對直線就建立了向兩方無限延伸的印象。又如在學過“角的概念”后,可讓學生回答:直線是平角嗎?射線是周角嗎?這能使掌握線與角、角與角的聯(lián)系和區(qū)別的同時,熟悉推理誰論證的日常用語,逐步養(yǎng)成科學判斷的習慣.
通過定義、定理、平行線、全等三角形幾部分的教學讓學生掌握證明的步驟和書寫格式,培養(yǎng)學生進行簡單推理論證的能力。做法是:
1.引導學生正確地辨別條件和結(jié)論,分步寫好證明過程,讓學生的括號內(nèi)注明每一步的理由,強調(diào)推理論證中的每一對“、”都言必有據(jù),要學生背記一些證明的“范句”,熟悉一些“范例”,做到既掌握證明方法步驟和書寫格式,也努力弄清證題的來龍去脈和編寫意圖。
2.讓學生論證一些寫好了已知、求證并附有圖形的證明題,先是一兩步推理,然后逐漸增加推理的步數(shù),主要是模仿證明。
3.讓學生自己寫出已知、求證、并自己畫出圖形來證明,每一步都得注明理由。
4.通過例題、練習向?qū)W生總結(jié)出推理的規(guī)律,簡單概括為“從題設(shè)出發(fā),根據(jù)已學過的定義、定理用分析的方法尋求推理的途徑,用綜合的方法寫出證明過程?!?/p>
通過全等三角形以后的教學培養(yǎng)學生對較復雜證明題的分析能力。要求學生對題中的每個條件,包括求證的內(nèi)容,要一個一個地思考,按照定義、公理或定理把已知條件一步步推理,得出新的條件,延伸出盡可能多的條件,避免忽視有些較難找的條件,同時不要忽視題中的隱含條件,比如圖形中的“對頂角”、“三角形內(nèi)角和”、“公共邊”、“公共角”等。
四、勤學多練培養(yǎng)數(shù)學邏輯思維能力的重要保證
關(guān)鍵詞:小學;數(shù)學;邏輯思維能力
任何能力的培養(yǎng)都不是一蹴而就的,而是需要一個較長的過程,數(shù)學邏輯思維能力的培養(yǎng)同樣如此,尤其是面對邏輯思維能力剛剛萌芽的小學生,教師一定要注意培養(yǎng)的方法和手段,切記根據(jù)小學生身心和思維能力發(fā)展的特點,循序漸進地對小學生進行數(shù)學邏輯思維能力的訓練。因此,本文將從激發(fā)興趣、授予方法、鞏固練習三個方面提出一些針對性的措施,僅供參考。
一、激發(fā)學生學習數(shù)學的興趣
邏輯思維能力作為一種意識,它是看不見、摸不著的,為了凸顯和檢驗它的存在,必須將其附著在一定的載體上,而數(shù)學便是培養(yǎng)學生邏輯思維能力的一個很好的載體。因此,要想培養(yǎng)學生的邏輯思維能力,首先要激發(fā)學生學習數(shù)學的興趣和熱情,那么如何才能使學生愛上數(shù)學呢?
第一,教師可以將游戲加入到數(shù)學學習中來,每個小學生都是愛游戲的,如果教師用有趣的游戲?qū)⒊橄蟮?、枯燥地?shù)學知識包裝起來,那么學生便可在游戲的過程中潛移默化地、高效地、主動地去學習和掌握數(shù)學知識。例如,在學習人教版小學四年級數(shù)學上冊中“億以內(nèi)數(shù)的讀法”時,教師可利用“繞口令競賽游戲”的方式引導學生自主推理出“末尾有零”“數(shù)中間有零”的不同讀法規(guī)律,諸如“24960000@個數(shù)字怎么讀呀?這樣讀……”“6407000這個數(shù)學怎么讀呀?這樣讀……”“85000300這個數(shù)學怎么讀呀?這樣讀……”等。通過繞口令游戲,教師可引導學生自主歸納推理出“億以內(nèi)數(shù)的讀法”。第二,教師可在導入環(huán)節(jié)為學生創(chuàng)設(shè)一個生活化的情境,就是在教學的開始給學生提供一個熟悉的生活情景,讓學生從一開始就進入一個教學情境,這樣學生會不自覺地聯(lián)想和挖掘生活中的情境,將數(shù)學知識與生活經(jīng)驗聯(lián)系起來,這樣在已有模式的基礎(chǔ)上,學生有話可講,有生活經(jīng)驗可循,便會以最大的熱情投入到數(shù)學知識的學習過程中去。例如,在學習乘法分配律時,教師也在導入環(huán)節(jié)為學生創(chuàng)設(shè)一個“給浴室鋪白色和藍色瓷磚”的情境,引導學生用不同的算法算一算要買多少塊白磚,多少塊藍磚,以得出乘法分配律的一般規(guī)律。然后也可利用演繹推理的方法讓學生運用乘法分配律去解決生活中的一些問題。綜上所述,無論是加入游戲還是創(chuàng)設(shè)生活化的情境,都大大激發(fā)了學生學習數(shù)學的熱情,而在愛上數(shù)學的同時,學生也懂得了邏輯思維能力在游戲和生活中的重大作用,在懂得這層意義后,學生學習數(shù)學知識、掌握邏輯思維的主動性和積極性都大為提高。
二、提供給學生進行邏輯思維的方法
俗話說:“授人以魚不如授人以漁?!闭嬲膶W習不是要求學生被動地接受知識,而是引導學生主動地去探求知識,邏輯思維能力的培養(yǎng)同樣如此。因此在數(shù)學教學過程中,教師要做好“引路人”的角色,教授給學生科學的思維方法,給予學生充足的時間和空間去主動摸索,主動思考,主動歸納和總結(jié)。為了提高學生的邏輯思維能力,教師要積極引導學生學會觀察,俗話說:“觀察是思維的開端和來源。”而且這種觀察并不是無意的,而是包含著思考的成分,那么就在這樣帶有思考的觀察中,學生的邏輯思維能力才會有所提升。例如,在學習“用量角器量角”這個知識點時,一般情況下,教師首先教會學生測量的是開口向右的角,那么在遇到開口向左的角時,教師切莫著急告訴學生量角的方法,而應(yīng)該讓學生自己去觀察,去轉(zhuǎn)動課本或試卷,通過觀察后,學生將會掌握不同開口方向的角的量法,而且在這一過程中,學生的思維也變得活躍起來。
三、借助綜合實踐活動鞏固邏輯思維
學校教育是為現(xiàn)實生活服務(wù)的,數(shù)學課程的開設(shè)也是如此,那么如果數(shù)學思維只停留在數(shù)學課堂上,只停留在會在數(shù)學試卷上,那么學習數(shù)學將是沒有任何價值的,只有將其運用到現(xiàn)實生活中,才能真正發(fā)揮它的價值。反過來,如果更多地用數(shù)學思維解決現(xiàn)實生活中的問題,那么學生的數(shù)學思維將會變得越來越活躍。唯有鼓勵學生更多地參加綜合實踐活動,學生的數(shù)學思維才會更加活躍。除此之外,“思維”原本就是抽象的、內(nèi)隱的事物,它是看不見、摸不著的,當然也是無法檢測的,唯有通過實踐活動才能對其有一個準確的檢測,由此可見,綜合實踐活動的開展有利于學生將內(nèi)隱的數(shù)學思維外顯出來,有利于將抽象的數(shù)學思維變得具體形象,這便是綜合實踐活動對發(fā)展小學生邏輯思維能力的有利影響。
綜上所述,本文從激發(fā)興趣到授予方法再到最后的鞏固練習,循序漸進地引導學生掌握數(shù)學知識,提升邏輯思維能力,可見邏輯思維能力的培養(yǎng)不是一蹴而就的,只有不斷地積累,不斷地鞏固練習,學生的邏輯思維能力才會日益提高。
參考文獻:
關(guān)鍵詞:實踐活動;邏輯思維;培養(yǎng)策略
一、要激發(fā)學生邏輯思維的興趣點
興趣是學生參與學習的動力源泉,是學生主動思考、積極探究的前提條件。在數(shù)學教學中,教師要善于激發(fā)學生數(shù)學邏輯思維的興趣點,讓他們在享受快樂的學習時,體驗成功的喜悅。例如,在教學“全等三角形”時,我讓學生拿出兩張紙,并使重疊的兩張紙固定,在紙上用尺子畫出一個三角形,用剪刀剪下來,得出兩個等大三角形。這時,讓學生討論:“從剪下來的三角形,我們發(fā)現(xiàn)了什么?”很快學生就得出:“這兩個三角形無論在形狀、大小上都是相同的,還能完全重合。”緊接著,我就引出關(guān)于“全等三角形”的概念:“能夠完全重合的兩個三角形叫做全等三角形。”隨后再讓學生把兩個三角形,做平移、翻折、旋轉(zhuǎn)的動作,觀察兩個三角形的重疊情況。學生通過親自動手操作,明確認識到:“不管是平移、翻折還是旋轉(zhuǎn),這兩個三角形還是一樣的?!蓖ㄟ^對全等三角形的認識這一動手實踐活動,讓學生對數(shù)學產(chǎn)生濃厚的興趣,加深自己對全等三角形的認識與理解,還使得整個課堂氛圍活躍,學生在動手實踐中獲得成功的喜悅,有效激發(fā)了學生數(shù)學學習的興趣。
二、要引導學生在生活中的邏輯思維意識
數(shù)學概念具有一定的概括性和抽象性,在記憶數(shù)學概念時,學生往往會感到苦惱、乏味。數(shù)學和日常生活有著千絲萬縷的聯(lián)系,因此,在課堂教學過程中,教師要引導學生在生活中的邏輯思維意識。運用好實物直觀和模型直觀。通過提供一些有趣的實物教具或是用多媒體展示一些動態(tài)圖形等,讓學生留意日常生活與數(shù)學相關(guān)的自然現(xiàn)象,改變以往機械性的思維模式,使他們對教師講述的概念與理論獲得全面理解、記憶。例如,在教學“軸對稱和中心對稱圖形”時,我先簡單講述了一下中心對稱的概念,隨后,從漢字、生活、藝術(shù)品、幾何圖形、車標、商標等方面,逐漸引出中心對稱圖形。如,漢字中的“王”、“日”、“申”,實際生活中的“雪花”、“風箏”,幾何圖形中的“正方形”、“平行四邊形”、“菱形”等。學生通過發(fā)現(xiàn)和尋找身邊隨處可見的“對稱圖形”,加深對“對稱”概念的理解。
三、要在解決數(shù)學問題中培養(yǎng)邏輯思維
在數(shù)學教學活動中,教師還要引導學生養(yǎng)成設(shè)疑、釋疑的好習慣,把學生的思維與解決數(shù)學問題相結(jié)合,啟發(fā)學生解決數(shù)學問題的動機,加深他們對數(shù)學知識的理解,進而提高他們的邏輯思維能力。例如,在教學幾何圖形“梯形”時,指導學生通過添加輔助線,把梯形問題轉(zhuǎn)化為三角形和平行四邊形,讓他們學會“分散條件集中化”的解題方法。教師可以出這樣一道題目:“在梯形ABCD中AB∥CD,CD>AB,BC>AD,求證:LD>
四、要拓展學生數(shù)學邏輯思維的空間
【關(guān)鍵詞】小學數(shù)學;教學;邏輯思維能力;措施
1. 前言
當今小學數(shù)學教學的基本任務(wù)之一是培養(yǎng)小學生的邏輯思維能力。如果想要為我國的社會主義現(xiàn)代化建設(shè)培養(yǎng)出更多優(yōu)秀的人才,那么首先就必須培養(yǎng)學生勇于創(chuàng)新以及獨立思考的能力,進而促進學生邏輯思維能力的提高。從一年級開始,小學數(shù)學教學就承擔起了提高和培養(yǎng)學生邏輯思維能力的重要任務(wù),因此,在目前的小學數(shù)學教學中加強對學生的邏輯思維能力的培養(yǎng)就顯得尤為迫切。
2. 小學數(shù)學教學中學生邏輯思維能力培養(yǎng)的重要性和必要性
2.1學生邏輯思維能力的培養(yǎng)貫穿在數(shù)學教學的全過程中。在數(shù)學教學過程當中,始終貫徹著邏輯思維能力的培養(yǎng),無論是其他階段的教學還是小學數(shù)學教學,都是提升以及鍛煉學生邏輯思維能力的最佳時期,并且二者是相輔相成,缺一不可的。
2.2學生邏輯思維能力的培養(yǎng)是小學教學的基本任務(wù)。通常情況下,學生所學到的知識門類多,顯得雜亂無章,這就迫切的要求學生具備邏輯思維能力,把自身所學到的知識都能夠羅列成一個簡單、有序的系統(tǒng),而小學數(shù)學教學中則能夠鍛煉以及形成這種邏輯思維能力。由此看來,小學數(shù)學教學對培養(yǎng)和提高學生的邏輯思維能力是非常重要的,并且對學生的綜合能力的提高也有著極大的推動作用。
2.3學生邏輯思維能力的培養(yǎng)有助于學生其他能力的提高。在小學學習階段,學生開始逐漸的向抽象邏輯思維方面過渡,這種過渡,是從形象思維轉(zhuǎn)變?yōu)槌橄笏季S,這是一個非常關(guān)鍵的質(zhì)變過程。在學生的這個質(zhì)變過程當中,學生需要運用自身的創(chuàng)新能力以及分析能力來把自己所直觀看到的事物提升到一個感性認識的階段,然后再進行相應(yīng)的邏輯思維的思考。所以,學生形成邏輯思維能力的同時,還能夠有效的提高其他方面的能力。
3. 小學數(shù)學教學中培養(yǎng)學生邏輯思維能力的措施
3.1科學的運用教學用具。邏輯思維屬于抽象思維的范疇,在當今的小學教學當中,學生是比較難于接受抽象思維培養(yǎng)的,因此,小學數(shù)學教師就必須利用一些教學用具來輔助教學,以便于正確的引導學生,幫助學生解析邏輯思維方面的形體以及概念。除此之外,教師還應(yīng)當要求有條件的學生能夠自己準備這方面的道具,這樣不但能夠提高學生的動手能力,調(diào)動學生學習的主動性以及積極性,而且還能夠充分的發(fā)揮學生的想象力,進而更好的提高學生的邏輯思維能力。
3.2重視學生的語言邏輯性。當今社會所需要的人才是能夠?qū)⒆陨硭鶎W到的知識用自己的語言表達出來,并且能夠?qū)W以致用的人才。小學數(shù)學教學過程當中,教師應(yīng)當鼓勵學生多“講”,學生通過把自己學到的知識經(jīng)過大腦組織、加工、提煉、表達出來,能夠有效的鍛煉自己的邏輯思維能力,這也是邏輯思維能力運用的良好體現(xiàn)。試想,如果學生僅僅只會做,但是卻無法將學到的知識通過自己的語言邏輯表達給別人,那么可以說這種學生的能力和那些又會做又會說的學生的能力相比,肯定是有很大差距的,這也是和我國的教育方向相違背的,這是典型的“書呆子”,現(xiàn)代化建設(shè)的人才不需要這樣的“書呆子”。因此,在日常的小學數(shù)學教學中,數(shù)學教師應(yīng)當積極的鼓勵學生勇敢的將自己所學到的知識運用自己的語言表達出來,鼓勵學生多說多講,通過學生語言組織和提煉的過程,能夠使學生的邏輯思維能力得以有效的提高。
3.3促進學生獨立思考。在小學教學階段,學生邏輯思維能力提高的重要方法之一就是不斷的促進和鼓勵學生獨立思考。數(shù)學教師應(yīng)當留給學生獨立思考問題的空間,為學生營造良好的獨立思考氛圍,還應(yīng)當讓學生將自己思考的過程敘述出來,并且說明自己的切實理由,進而提高思維的邏輯性。由此看來,如果想全面的提高和培養(yǎng)學生邏輯思維能力,那么必須鼓勵學生勤于思考,并且能夠獨立思考。學生在進行有條理、獨立思考的時候,首先應(yīng)當明確基本的數(shù)學概念,然后做到推理合乎邏輯、條理清晰,不但要有比較基本的邏輯思維能力,還應(yīng)當有深層次的獨立解決問題的能力和深入的思維邏輯能力。因此,數(shù)學教師必須不斷的對學生進行數(shù)學方面的科學訓練,這也是學生獨立思考的重要前提。除此之外,學生進行有根據(jù)、獨立的思考需要借助于數(shù)學教師科學以及長期的培養(yǎng)和訓練,在訓練和培養(yǎng)的過程當中,數(shù)學教師應(yīng)當選擇與學生相適合的教育教學方式,將語言、思維和操作三者有機的結(jié)合起來。數(shù)學教師還應(yīng)該明白,學生邏輯思維能力的培養(yǎng)和提高是一個不斷積累的過程,也是一個循序漸進的過程,因此,培養(yǎng)學生有條理、有根據(jù)的獨立思考的能力必須經(jīng)過時間的不斷積淀,教師不能夠過于心急和迫切,因為短時間之內(nèi)成效是不可能過于顯著的,但是,只要堅持科學和持久的訓練,便能夠逐漸的將學生的能力培養(yǎng)起來,最終使學生的邏輯思維能力得以提高。
4. 結(jié)束語
總而言之,數(shù)學學科是一門有著較強邏輯性的系統(tǒng)學科。小學數(shù)學教師在培養(yǎng)學生邏輯思維能力的時候,應(yīng)當將眼光放長遠,將學生邏輯思維能力的任務(wù)貫穿在整個數(shù)學教學的過程當中。在教學過程中,教師必須有計劃、有目的的訓練以及培養(yǎng)學生的整體邏輯思維能力,使學生的邏輯思維能力在日常的學習當中逐步的提高。學生邏輯思維能力的培養(yǎng)是當今小學教學中的一項基本而又艱巨的任務(wù),因此,小學教育工作者應(yīng)當積極的承擔起這項任重而道遠的教學使命,義不容辭的為培養(yǎng)現(xiàn)代化建設(shè)的人才貢獻出自己的力量,并且盡自身最大的努力將教育教學工作做好,為國家培養(yǎng)出更多邏輯能力強以及思維敏捷的優(yōu)秀棟梁之才。
【參考文獻】
[1]郭先麗.淺談小學數(shù)學教學中學生邏輯思維的培養(yǎng)[J]
關(guān)鍵詞:小學數(shù)學教學;邏輯思維能力;教學策略
在現(xiàn)階段的小學數(shù)學教學中,教學的出發(fā)點始終是促進學生數(shù)學綜合能力的提高,以達到全面發(fā)展。小學數(shù)學不僅要充當起一個知識傳輸?shù)呢熑?,更?yīng)是一種數(shù)學能力和思維能力的訓練過程,它讓小學生在遵循和掌握數(shù)學知識和規(guī)律過程中逐漸形成從書本到實際的過渡過程,從實際生活出發(fā),逐漸建立起數(shù)學知識與生活的橋梁,為抽象的數(shù)學問題建立起一個與之相對應(yīng)的生活模型,同時為其提供一個正確的應(yīng)用和解釋,從而引導學生在數(shù)學學習過程中有一個對數(shù)學問題的正確理解。另外,在思維能力和情感態(tài)度方面,教師也應(yīng)該引導學生在學習過程中端正學習態(tài)度,強化邏輯思維能力的培養(yǎng),制訂科學的教學策略和教學方法,以促進學生邏輯思維能力的發(fā)展和進步。
一、小學數(shù)學教學中訓練學生邏輯思維能力的重要性
通俗而言,思維是一個寬泛的概念,從心理學角度而言,思維包羅萬象,具有多種類型,小學數(shù)學不僅是知識的傳授過程,更是小學生思維特點和數(shù)學綜合能力的訓練過程。數(shù)學學習少不了創(chuàng)造性思維的協(xié)助,而創(chuàng)造性思維的基礎(chǔ)則是邏輯思維的建構(gòu)。對于大多數(shù)人而言,倘若缺乏必要的邏輯思維,可能無法進行有效有序的生活和發(fā)展,而對于學生而言,缺少了邏輯思維能力,則缺乏了創(chuàng)新能力的發(fā)展契機。因此,在小學數(shù)學教學中有計劃地進行學生邏輯思維能力的培養(yǎng),是值得教育界人士重視和深入研究的。在小學不同年級實施不同的邏輯思維培養(yǎng)措施,結(jié)合教具演示和實際操作,讓學生在一個形象明了的概念印象中學習數(shù)學知識。培養(yǎng)邏輯思維不能一概而論,還需要顧及學生的個性和共性,需要適當?shù)夭扇】茖W合理的方法,從根本上為學生邏輯思維能力的培養(yǎng)奠定基礎(chǔ)。
二、小學數(shù)學教學中訓練學生邏輯思維能力的相關(guān)策略
1.引出問題
任何一種思維的建立和培養(yǎng)都可以通過問題的形式來引出,數(shù)學邏輯思維能力也不例外,數(shù)學知識的學習從本質(zhì)上而言就是一種問題的解答和思考過程,換言之,就是一種較為復雜的思維活動。數(shù)學課堂的學習過程需要在數(shù)學教師的引導下進行問題的發(fā)現(xiàn)和探討,最終解決問題。如果在數(shù)學課堂上教師的引導效果較好,那么學生就能很快跟上教師的節(jié)奏,從而使學生受益匪淺。
通常小學數(shù)學教學都是借助相關(guān)問題的提出而展開的,換言之,小學數(shù)學教學過程離不開問題,只有通過有價值的知識點的問題解決,才能達到知識點活用的目的,從而讓學生在解題過程中做到知識點的活用,訓練自身的邏輯思維能力。有目的、有意識的邏輯思維能力訓練過程無疑對于小學生的整個學習過程都是有益的,通過演繹推理、歸納總結(jié)的思路進行學習,對于整體思維的提升也有重大意義。
2.重視方法
小學生邏輯思維能力的培養(yǎng)要求教師在教學過程中要運用恰當?shù)臄?shù)學教學方法,并且精心準備和設(shè)計每一堂課程,使每一節(jié)數(shù)學課都能有的放矢,形象生動,具有趣味性,從而激發(fā)學生學習數(shù)學的信心和興趣。學生數(shù)學學習興趣的培養(yǎng)在很大程度上可以促進其邏輯思維能力的提升。在解題過程中,學生會主動結(jié)合之前學過的數(shù)學知識進行問題思考,并且做到融會貫通,進而通過自身努力將相關(guān)問題解答出來。
3.設(shè)計習題
數(shù)學練習題不僅是一種知識的強化過程,更是一種知識的深化過程,學生可以通過相關(guān)的習題加深對于知識點的印象,從而提高自身的數(shù)學應(yīng)用能力和數(shù)學思維能力。而在這一過程中,教師可以立足于學生邏輯思維能力培養(yǎng)的初衷,結(jié)合教學目標和課程知識點內(nèi)容進行相關(guān)習題的設(shè)計,把握好難度,盡量使大多數(shù)學生都能通過自身的知識運用將問題解答出來,以加強學生的自信心和成就感,讓學生從解題中獲得學習的樂趣。
總而言之,在小學數(shù)學教學過程中,數(shù)學教師應(yīng)當始終堅持以學生為本,以學生為主體,為學生積極地營造良好的數(shù)學知識的學習氛圍,為學生創(chuàng)設(shè)自主探究的獨立空間,從根本上去激發(fā)學生的求知欲,調(diào)動學生的積極性和主動性,培養(yǎng)學生積極進取、勇于探索的精神,使學生全部參與到數(shù)學學習的整個過程當中,讓學生的數(shù)學思維能力可以在數(shù)學課堂教學中得以充分發(fā)展,全面地培養(yǎng)以及提高學生的邏輯思維能力。
參考文獻:
[1]宋彩紅.淺談小學數(shù)學教學中的邏輯思維方法[J].新課程學習(上),2011(11).
[2]楊冬菊.怎樣提高小學數(shù)學學困生的邏輯思維能力[J].中國校外教育,2009(S3).
關(guān)鍵詞: 小學數(shù)學教學 邏輯思維能力 培養(yǎng)建議
在小學數(shù)學教學中,教師應(yīng)為學生制訂邏輯思維能力的訓練與培養(yǎng)方案,有計劃、有目的地對其進行邏輯思維能力的培養(yǎng),這樣既有利于學生學習能力的提升,又有利于提高教學質(zhì)量,更有利于提高學生的素質(zhì),為其今后的學習與發(fā)展奠定扎實的基礎(chǔ)。
一、轉(zhuǎn)變教學重點,培養(yǎng)學生初步的思維能力
以前多數(shù)學校和教師強調(diào)和重視的就是學生的學習成績及考試能力,忽視學生思維能力的培養(yǎng)。在小學數(shù)學教學大綱中,有一點要求非常明確,即培養(yǎng)學生初步的思維能力。這樣既可以培養(yǎng)學生的創(chuàng)造思維能力,還可以培養(yǎng)學生的邏輯思維能力。而初步的思維能力則是二者的基礎(chǔ)?;跀?shù)學科目的特點,即數(shù)學有大量的數(shù)學術(shù)語、邏輯術(shù)語及相應(yīng)的符號系統(tǒng),有很多判斷組成的確定體系,通過邏輯推理,一些理論生成新的理論,一些判斷生成新的判斷,數(shù)學就是由這些理論和判斷組成的。雖然小學生由于年齡小,他們的思維能力尚處于萌芽或者說起步階段,教學內(nèi)容也比較簡單,不需要推理論證,但只要學習了數(shù)學科目,就離不開判斷或推理?;蛘呖梢钥偨Y(jié)出,數(shù)學學習,其實就是培養(yǎng)學生的邏輯思維能力。也正由于小學生的年齡特點,他們還處于從形象思維向邏輯思維轉(zhuǎn)變的過渡階段。因此,在數(shù)學教學中應(yīng)針對教學重點,培養(yǎng)學生初步的思維能力,為其日后的學習與發(fā)展打下良好的基礎(chǔ)。
二、學生邏輯思維能力的訓練與培養(yǎng)途徑
邏輯思維能力是多層次的。因此,在小學數(shù)學教學中,教師應(yīng)盡可能地給予學生多層次、多方面、多角度的邏輯思維能力的培養(yǎng),提高學生的思維品質(zhì),發(fā)展學生的邏輯思維能力。筆者結(jié)合多年的教學實踐,對此提出幾點看法。
1.鼓勵學生嘗試多種思維方式,提高思維靈活性。
數(shù)學有著“唯一性”的特點,即“一就是一”,但如果從思維方式看待數(shù)學,它在很多時候也具備“靈活性”的特點。這個認知對于小學數(shù)學來說,是非常重要的。在小學數(shù)學解題過程中,經(jīng)常一題可以多解,學生可以通過這些題目中鍛煉自己的邏輯思維能力,提高自身思維的靈活性。數(shù)學教師可以在講解前,讓學生根據(jù)題型的不同,嘗試著通過轉(zhuǎn)變思路,尋求一種更適合、更簡單的解題方法。如:200千克海水能夠制鹽2.5千克,那么50000千克的海水能夠制鹽多少千克?這屬于一題多解,可以通過2.5÷200×50000;50000÷(200÷2.5);2.5×(50000÷200)幾種方法進行解答。
2.培養(yǎng)學生從表面現(xiàn)象尋找和發(fā)現(xiàn)問題,提高思維的深刻性。
思維的深刻性就是透過現(xiàn)象看本質(zhì)的能力,它是思維品質(zhì)的基礎(chǔ)。在小學數(shù)學中,數(shù)學教師可以通過開放性習題對學生進行思維訓練,引導和幫助學生嘗試從表面現(xiàn)象發(fā)現(xiàn)問題的內(nèi)在規(guī)律與內(nèi)在聯(lián)系,從而找出更多、更有效的解決問題的方法,提高學生思維的深刻性,這是提高學生思維品質(zhì)的基礎(chǔ)。
3.打破常規(guī),培養(yǎng)思維的獨創(chuàng)性。
思維的獨創(chuàng)性是指思維具有獨立創(chuàng)造的水平,因此,教師在教學中要鼓勵學生大膽想象,尋找多種解題方法,不受到常規(guī)的解題模式的限制,找出解題最簡單的方法。例如:把2、5、6三個數(shù)字卡片進行組數(shù),如果按照常規(guī)的思維模式,組成的數(shù)就只有25.26.256.265.52.56……除了這些數(shù)外,學生還會發(fā)現(xiàn)“6”的特點,把“6”反過來是“9”,從而組成更多的數(shù),也是思維創(chuàng)造性的一種表現(xiàn),進而培養(yǎng)學生的思維品質(zhì),提高學生的邏輯思維能力。
三、小學生邏輯思維能力的訓練及培養(yǎng)
小學生邏輯思維能力的訓練及培養(yǎng),對于其今后的學習及發(fā)展有重要的意義。為此筆者結(jié)合實踐,提出幾種訓練方法。
1.延展法。
延展法可分為單向延展法、多向延展法及反思延展法等。單向延展法應(yīng)由易到難、由因?qū)Ч?,逐步延展;多向延展?yīng)注意引導學生觀察各單元之間的聯(lián)系及單元內(nèi)知識點的聯(lián)系等;反思延展法則主要是引導學生在解題后對整個審題過程和解題方法及解題所用知識的回顧與總結(jié),逐步培養(yǎng)學生養(yǎng)成解題后會進行反思的良好習慣,這是培養(yǎng)和提高學生邏輯思維能力的有效方法。
2.破思維定勢訓練法。
所謂的破思維定勢訓練法,其實就是指教師呈現(xiàn)一組一組的題目,通過題組訓練,打破思維定勢的一種思維訓練方式。打破思維定勢是為了更好地促進學生邏輯思維能力的提高與發(fā)展。因此,教師可通過題組進行教學,選取的題型一般為基本題與變式題的結(jié)合。
3.常規(guī)求異法。
常規(guī)求異法對教師及學生提出的要求更高,需要學生改變常規(guī)的定向思維方式,不受固定思維支配,獨辟蹊徑,使之既在意料之外,又在情理之中,引導學生從不同的角度思考問題,以求得問題解決的思維訓練方式。以12根火柴棒擺6個相等的正方形為例。按照學生慣有的思維方式,多數(shù)學生只是擺弄擺弄,這樣顯然無法達到題目的要求,此時可以引導學生聯(lián)想已學過的正方體的特征(12條棱的長度相等,六個面的面積相等)。學生的思路打開了,問題也就迎刃而解了,在擺出的正方體中找到了六個相等的正方形。
四、結(jié)語
邏輯思維能力的培養(yǎng)是一項長期的工作,對于小學生來講更是一個長期的過程。因此,小學數(shù)學教師應(yīng)從思想上充分認識到學生邏輯思維能力培養(yǎng)的重要性,注重對學生進行邏輯思維能力的培養(yǎng),引導和幫助學生在學習知識的基礎(chǔ)上進一步提高自身的邏輯思維能力,促進學生全面發(fā)展。
參考文獻:
[1]姜峰.淺談數(shù)學教學中邏輯思維能力的培養(yǎng)[J].職業(yè)技術(shù),2012.