前言:想要寫出一篇引人入勝的文章?我們特意為您整理了云控制下的業(yè)務(wù)服務(wù)機(jī)器人系統(tǒng)設(shè)計(jì)范文,希望能給你帶來(lái)靈感和參考,敬請(qǐng)閱讀。
摘要:文中提出一種基于云控制的業(yè)務(wù)引導(dǎo)機(jī)器人系統(tǒng)的設(shè)計(jì)方案。系統(tǒng)的硬件部分由攝像頭和光電傳感器等模塊組成。在機(jī)器人系統(tǒng)中采用深度強(qiáng)化學(xué)習(xí),實(shí)現(xiàn)了對(duì)未知環(huán)境的預(yù)測(cè),提高機(jī)器人對(duì)環(huán)境的適應(yīng)能力。仿真結(jié)果表明:機(jī)器人可實(shí)現(xiàn)路線識(shí)別和自動(dòng)導(dǎo)航的功能,能較好適應(yīng)未知環(huán)境、及時(shí)完成業(yè)務(wù)的引導(dǎo)工作;該系統(tǒng)設(shè)計(jì)合理,操作簡(jiǎn)單,具有一定的市場(chǎng)價(jià)值。
關(guān)鍵詞:深度強(qiáng)化學(xué)習(xí);自動(dòng)導(dǎo)航;云控制;路線識(shí)別;機(jī)器人;未知環(huán)境
引言
隨著人工智能的發(fā)展,機(jī)器人技術(shù)已成時(shí)下研究的熱點(diǎn)之一。機(jī)器人也逐漸滲透到人們的生活中,同時(shí)也在慢慢改變著人們的生活方式。因此,研究和開發(fā)機(jī)器人有著一定的社會(huì)意義和經(jīng)濟(jì)價(jià)值。近年來(lái),服務(wù)型機(jī)器人成為了人們關(guān)注和研究的熱點(diǎn),例如智能家居服務(wù)機(jī)器人、兒童看護(hù)機(jī)器人和老人陪護(hù)機(jī)器人等。其中,業(yè)務(wù)服務(wù)型機(jī)器人在辦理業(yè)務(wù)方面有著很大的發(fā)展空間。為了解決人力成本高,效率低的問(wèn)題,很多業(yè)務(wù)廳都使用服務(wù)機(jī)器人替代人力的新型高效服務(wù)方案。雖然現(xiàn)在已出現(xiàn)了前臺(tái)服務(wù)機(jī)器人和設(shè)備,但是智能化普遍不高,而且服務(wù)效率很低,無(wú)法滿足人們的需求,而且本地資源的有限性限制了機(jī)器人的開發(fā)。隨著云技術(shù)的不斷發(fā)展,云控制技術(shù)給機(jī)器人的開發(fā)及研究提供新的方向。云計(jì)算資源規(guī)模龐大,服務(wù)器數(shù)量眾多并且分布廣。云計(jì)算系統(tǒng)的平臺(tái)管理技術(shù)能夠高效調(diào)配大量服務(wù)器資源,使其更好協(xié)同工作能力,其能方便地部署和開通新業(yè)務(wù),快速發(fā)現(xiàn)且恢復(fù)系統(tǒng)故障。因此,通過(guò)云控制技術(shù)實(shí)現(xiàn)資源分配和調(diào)度[1],利用線上控制多組機(jī)器人,提高機(jī)器人的工作效率,結(jié)合云平臺(tái)實(shí)現(xiàn)多組數(shù)據(jù)的收集和分析,增強(qiáng)機(jī)器人的可控制性。通過(guò)云端搭建神經(jīng)網(wǎng)絡(luò)和ROS操作系統(tǒng),實(shí)現(xiàn)了多機(jī)控制協(xié)作。由此可見,結(jié)合云端對(duì)機(jī)器人進(jìn)行開發(fā)在一定程度上可以提高機(jī)器人智能性。
1系統(tǒng)總體架構(gòu)
業(yè)務(wù)服務(wù)機(jī)器人系統(tǒng)的架構(gòu)有三層:海端機(jī)器人組、云服務(wù)端和遠(yuǎn)程控制端。如圖1所示,系統(tǒng)架構(gòu)采用分層設(shè)計(jì),使得具有一定的靈活性,便于移植和控制。海端機(jī)器人[2]組由多組智能機(jī)器人組成,主要負(fù)責(zé)引導(dǎo)用戶,并提供服務(wù),其工作流程如下:首先,機(jī)器人獲取到用戶需要辦理的業(yè)務(wù)指令后,上傳攝像頭對(duì)周圍環(huán)境感知的數(shù)據(jù)到云端;接著,結(jié)合線上云服務(wù)端算法,驅(qū)動(dòng)電機(jī)工作,實(shí)現(xiàn)自動(dòng)導(dǎo)航;最后,完成引導(dǎo)用戶的任務(wù)。云服務(wù)端為上層用戶端,主要用于搭建數(shù)據(jù)庫(kù)服務(wù)端、TensorFlow學(xué)習(xí)框架和ROS系統(tǒng)?;贚inux操作環(huán)境開發(fā),便于開發(fā)和移植。云端通過(guò)網(wǎng)絡(luò)接收機(jī)器人的請(qǐng)求服務(wù)和機(jī)器人感知的數(shù)據(jù),結(jié)合TensorFlow學(xué)習(xí)框架,通過(guò)ROS節(jié)點(diǎn)消息[3]實(shí)現(xiàn)對(duì)機(jī)器人控制;通過(guò)云服務(wù)端,遠(yuǎn)程控制端可以間接訪問(wèn)機(jī)器人組。遠(yuǎn)程控制端,即可以提供遠(yuǎn)程服務(wù)。遠(yuǎn)程服務(wù)端可以細(xì)分為兩部分:管理員控制端和用戶服務(wù)端。工作人員可以通過(guò)此系統(tǒng)的上位機(jī)登錄管理員控制終端,實(shí)現(xiàn)對(duì)系統(tǒng)的監(jiān)控和控制;用戶通過(guò)Web端可以實(shí)現(xiàn)對(duì)系統(tǒng)發(fā)送請(qǐng)求服務(wù)和查看相關(guān)業(yè)務(wù)的辦理進(jìn)程。
2機(jī)器人硬件設(shè)計(jì)
該機(jī)器人硬件設(shè)計(jì)總體框圖如圖2所示,機(jī)器人硬件設(shè)計(jì)遵循簡(jiǎn)易化模塊搭建原則,即去除多余的傳感器和驅(qū)動(dòng)設(shè)備,以最簡(jiǎn)的硬件搭建最完成的硬件系統(tǒng)。該機(jī)器人的核心板選用JetsonNano板;攝像頭選用的是網(wǎng)絡(luò)USB攝像頭;HDMI顯示器選用分辨率為1024×600,尺寸為7寸的電容屏;電機(jī)驅(qū)動(dòng)模塊選用TB6612雙路PWM驅(qū)動(dòng)模塊;光電傳感器模塊選用E18-D80NK光電傳感器。
2.1核心控制板
核心控制板選用的是JetsonNano人工智能GPU開發(fā)板。JetsonNano有很高的計(jì)算性能,提供了470多個(gè)GFLOP,可用于快速運(yùn)行AI算法,并行運(yùn)行多個(gè)神經(jīng)網(wǎng)絡(luò),同時(shí)處理多個(gè)高分辨率顯示器。JetsonNano的功耗低,它的功耗僅為5~10W;提供豐富的接口,搭配4個(gè)USB3.0接口、40PINGPIO擴(kuò)展口、多個(gè)HDMI接口、MIPICSI攝像頭接口和千兆以太端口等。同時(shí),此核心板搭配有功能擴(kuò)展板,功能擴(kuò)展板實(shí)現(xiàn)了對(duì)核心板功能的擴(kuò)展,擴(kuò)展板擴(kuò)展了多個(gè)SPI接口,I2C接口和PWM接口等外部接口。
2.2電機(jī)驅(qū)動(dòng)模塊
電機(jī)驅(qū)動(dòng)模塊選用L298N,其通過(guò)控制高低電平進(jìn)而控制電機(jī)的轉(zhuǎn)動(dòng),高速時(shí)可輸出相對(duì)較高的力矩。L298N的定位精度較高,可以讓電機(jī)達(dá)到精確的控制。通過(guò)控制PWM信號(hào)調(diào)整電機(jī)的運(yùn)動(dòng)速度變化,且此模塊具有驅(qū)動(dòng)能力強(qiáng)發(fā)熱低,抗干擾能力強(qiáng)的特點(diǎn)。
2.3光電傳感器模塊
光電傳感器模塊選用E18-D80NK傳感器模塊,該傳感器具有成本低和性能穩(wěn)定的特點(diǎn)。該模塊由發(fā)射器和接收器組成,發(fā)射器對(duì)檢測(cè)的物體不間斷地發(fā)射紅外光束,接收器把檢測(cè)反射回來(lái)的光束轉(zhuǎn)換為電流后傳輸給主控驅(qū)動(dòng)電路。發(fā)射器和接收器的檢測(cè)距離具有可調(diào)節(jié)性,調(diào)節(jié)范圍為50~2000cm,探測(cè)的距離遠(yuǎn)且不易被外界干擾。
3機(jī)器人結(jié)構(gòu)設(shè)計(jì)
服務(wù)機(jī)器人結(jié)構(gòu)設(shè)計(jì)如圖3所示,從下到上為移動(dòng)層、升降層和交互層。移動(dòng)層的底盤采用三個(gè)全向輪以中心對(duì)稱結(jié)構(gòu)的分布,邊側(cè)的三個(gè)高清攝像頭和底側(cè)的多個(gè)紅外傳感器相結(jié)合檢測(cè)收集周邊的路況和障礙;升降層通過(guò)步進(jìn)電機(jī)轉(zhuǎn)動(dòng)絲桿,從而上下移動(dòng)圓盤來(lái)控制機(jī)器人的整體高度,以適應(yīng)不同高度的使用者;交互層由顯示器構(gòu)成,頂部的顯示屏可以與用戶進(jìn)行交互,顯示屏顯示需辦理業(yè)務(wù)的排隊(duì)人數(shù)和目的最優(yōu)路線圖。
4系統(tǒng)軟件設(shè)計(jì)
4.1云服務(wù)端架構(gòu)設(shè)計(jì)
云服務(wù)端架構(gòu)包括ROS操作系統(tǒng)、TensorFlow和MySQL數(shù)據(jù)庫(kù)三部分,如圖4所示。云服務(wù)端主要用于機(jī)器人路線規(guī)劃算法的計(jì)算任務(wù)和數(shù)據(jù)分析存儲(chǔ),云服務(wù)端提供了API接口供管理員和用戶通過(guò)Web端訪問(wèn),利用搭建的通信協(xié)議層與海端的機(jī)器人進(jìn)行通信。
4.1.1ROS系統(tǒng)ROS(RobotOperatingSystem)[4]是由WillowGarage公司在2010年一個(gè)開源的機(jī)器人操作系統(tǒng),旨在提高機(jī)器人開發(fā)過(guò)程中的軟件利用率。ROS是一種分布式處理框架,主要特點(diǎn)包括:具有點(diǎn)對(duì)點(diǎn)的設(shè)計(jì)特點(diǎn),支持多機(jī)協(xié)作;支持語(yǔ)言混合開發(fā),支持Python、C++等編程語(yǔ)言;架構(gòu)精簡(jiǎn),集成度高,每一個(gè)的功能節(jié)點(diǎn)可以單獨(dú)編譯,接口統(tǒng)一,提高了軟件復(fù)用率。云服務(wù)端上裝載有ROS_bridge[5],ROS_bridg是ROS開源環(huán)境下的一個(gè)擴(kuò)展模塊,由ChristopherCrick,GraylinJay,SarahOsentosiki,BenjaminPitzer和OdestChadwickeJenkins提出ROS_bridg是一種中間插件,通過(guò)ROS_bridg可以使得云端ROS系統(tǒng)和海端的機(jī)器人群進(jìn)行交互控制,使得機(jī)器人控制更加高效性。
4.1.2TensorFlow學(xué)習(xí)框架TensorFlow是谷歌研發(fā)的第二代人工智能學(xué)習(xí)系統(tǒng),完全開源。在云服務(wù)端搭建TensorFlow學(xué)習(xí)框架,通過(guò)將訓(xùn)練完成的coco訓(xùn)練集部署在云服務(wù)端可以實(shí)現(xiàn)機(jī)器人群對(duì)周圍環(huán)境物體的識(shí)別;通過(guò)部署深度Qt可以實(shí)現(xiàn)機(jī)器人群自動(dòng)規(guī)劃路線以及導(dǎo)航的工作。在云端搭建TensorFlow學(xué)習(xí)框架結(jié)合通信層協(xié)議,可以實(shí)現(xiàn)在多機(jī)協(xié)作工作,在云端服務(wù)器完成強(qiáng)化學(xué)習(xí)后,機(jī)器人只需要通過(guò)請(qǐng)求服務(wù)即可獲取云端訓(xùn)練好的數(shù)據(jù)集。這樣大大提高了工作效率,不需要單獨(dú)對(duì)每個(gè)機(jī)器人強(qiáng)化學(xué)習(xí)訓(xùn)練。
4.2控制端操作界面設(shè)計(jì)
針對(duì)本系統(tǒng)設(shè)計(jì)了一套基于Qt的系統(tǒng)操作界面,如圖5所示。Qt[6]是一個(gè)跨平臺(tái)基于C++的的圖形界面設(shè)計(jì)的開發(fā)框架。圖形用戶界面(GraphicalUserInterface,GUI),又稱為圖形用戶接口,是采用圖形方式顯示的計(jì)算機(jī)操作用戶界面[7]。此界面主要由業(yè)務(wù)信息、人流情況、業(yè)務(wù)路線、導(dǎo)航地點(diǎn)輸入以及地圖這5個(gè)主要選項(xiàng)組成。業(yè)務(wù)信息功能是提供當(dāng)前業(yè)務(wù)的具體信息,點(diǎn)擊進(jìn)去即可獲取詳細(xì)的信息,例如辦理業(yè)務(wù)的具體步驟和需要辦理的子業(yè)務(wù)等等;人流情況功能是提供客戶當(dāng)前該業(yè)務(wù)的人流量的信息,方便用戶根據(jù)人流量計(jì)劃辦理的業(yè)務(wù)的時(shí)間;通過(guò)業(yè)務(wù)路線功能,用戶可以在顯示屏上查看辦理的路線以及導(dǎo)航路線圖;界面提供了業(yè)務(wù)的擁擠度功能,用戶可以直觀看到辦理業(yè)務(wù)的人流擁擠程度。
5系統(tǒng)試驗(yàn)與分析
為了測(cè)試系統(tǒng)的性能,在物理仿真環(huán)境Gazebo下進(jìn)行了流程測(cè)試和路徑規(guī)劃。如圖6所示,地圖設(shè)置入口和出口,測(cè)試機(jī)器人從入口運(yùn)動(dòng)到出口的情況。首先在云端運(yùn)行ROS系統(tǒng)后,已經(jīng)訓(xùn)練打包好的路線規(guī)劃算法的消息,仿真機(jī)器人通過(guò)通信接口訂閱云端的消息后,執(zhí)行路線規(guī)劃算法,仿真效果如圖6所示,仿真機(jī)器人有效地避過(guò)障礙物,順利到達(dá)出口。路線規(guī)劃算法是基于Q-Learing算法,Q即是Q(s,a),就是某一時(shí)刻state狀態(tài)下,采取動(dòng)作ation后收獲到的效益期望reward。Q學(xué)習(xí)算法是一種基于數(shù)值迭代的動(dòng)作規(guī)劃方法[8],通過(guò)評(píng)估仿真機(jī)器人某一狀態(tài)下運(yùn)動(dòng)好壞,自動(dòng)規(guī)劃最優(yōu)運(yùn)動(dòng)的動(dòng)作。利用Q-Learing算法可以使機(jī)器人具備自學(xué)習(xí)能力[9],機(jī)器人可以通過(guò)與環(huán)境交互,在錯(cuò)誤中進(jìn)行學(xué)習(xí),自主學(xué)習(xí)最優(yōu)路線的走法。
6結(jié)語(yǔ)
本文將云計(jì)算與ROS系統(tǒng)結(jié)合,設(shè)計(jì)基于云控制的業(yè)務(wù)機(jī)器人系統(tǒng)。通過(guò)深度強(qiáng)化學(xué)習(xí),機(jī)器人組能夠在未知的的環(huán)境中自動(dòng)導(dǎo)航,完成終端分配的任務(wù),并通過(guò)構(gòu)建云平臺(tái),實(shí)現(xiàn)機(jī)器人資源的調(diào)度和分配。仿真結(jié)果表明,所設(shè)計(jì)的機(jī)器人系統(tǒng)對(duì)未知環(huán)境較好地適應(yīng)能力,可控制性高,可移植性強(qiáng)。
參考文獻(xiàn)
[1]李波,薛端,黃鑫.云機(jī)器人系統(tǒng)研究綜述[J].計(jì)算機(jī)工程與應(yīng)用,2017,53(17):26-40.
[2]陳賢,武延軍.基于的云機(jī)器人服務(wù)框架[J].計(jì)算機(jī)系統(tǒng)應(yīng)用,2016,25(10):73-80.
[3]熊安,卞春江,周海,等.基于的機(jī)器人定位與導(dǎo)航系統(tǒng)的仿真設(shè)計(jì)[J].電子設(shè)計(jì)工程,2018,26(24):188-193.
[4]安峰.基于開源操作系統(tǒng)的機(jī)器人軟件開發(fā)[J].單片機(jī)與嵌入式系統(tǒng)應(yīng)用,2017,17(5):27-29.
[6]鄭松濤.基于Qt的助教辦公自動(dòng)化系統(tǒng)客戶端的分析與設(shè)計(jì)[D].北京:北京郵電大學(xué),2019.
[7]喻曉,夏澎.基于的便攜式心電監(jiān)護(hù)儀應(yīng)用軟件設(shè)計(jì)[J].計(jì)算機(jī)系統(tǒng)應(yīng)用,2017,26(5):221-226.
[8]方敏,李浩.基于狀態(tài)回溯代價(jià)分析的啟發(fā)式學(xué)習(xí)[J].模式識(shí)別與人工智能,2013,26(9):838-844.
[9]江其洲,曾碧.基于深度強(qiáng)化學(xué)習(xí)的移動(dòng)機(jī)器人導(dǎo)航策略研究[J].計(jì)算機(jī)測(cè)量與控制,2019,27(8):217-221.
[10]王博瑋,陸中成.基于云的餐廳服務(wù)機(jī)器人系統(tǒng)設(shè)計(jì)[J].自動(dòng)化表,2019,40(8):65-69.
作者:林宏偉 陳澤興 陳俞秀 陳琪媚 趙其湛 洪遠(yuǎn)泉 單位:韶關(guān)學(xué)院