公務(wù)員期刊網(wǎng) 精選范文 應(yīng)用題范文

應(yīng)用題精選(九篇)

前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的應(yīng)用題主題范文,僅供參考,歡迎閱讀并收藏。

應(yīng)用題

第1篇:應(yīng)用題范文

這是一道再簡(jiǎn)單不過(guò)的算術(shù)題:36除以4等于多少?我想大家都會(huì)脫口而出:等于9??扇绻@是一道出現(xiàn)在帶團(tuán)場(chǎng)景中的應(yīng)用題,結(jié)果就大不相同了。

帶團(tuán)時(shí)經(jīng)常會(huì)遇到這樣的事:帶36人的旅游團(tuán)去餐廳吃飯,服務(wù)員給客人安排了4張餐桌,每桌9人。算起來(lái)固然不錯(cuò),可這時(shí)麻煩卻出現(xiàn)了——團(tuán)里的游客全都是成雙成對(duì)的夫婦,如果每張餐桌安排9個(gè)位子,那么肯定會(huì)有兩對(duì)夫婦被拆散到不同的餐桌。遇到這種情況,我只好趕緊讓餐廳進(jìn)行調(diào)整,請(qǐng)服務(wù)員重新擺椅子、放餐具,一通手忙腳亂,好不容易才讓客人滿意落座。這時(shí)我總會(huì)提醒餐廳服務(wù)員,以后再遇到36除以4這樣的情形,一定要記住答案是10-10-8-8。

其實(shí)所謂經(jīng)驗(yàn),很多時(shí)候就看你是否“有心”。而那些游客滿意率很高的餐廳,成功的“秘籍”往往就在于這些容易被人忽略的細(xì)節(jié)。

有一回我?guī)F(tuán)去新疆,在喀什的一家餐廳吃飯。老外吃米飯有個(gè)特點(diǎn),就是喜歡用醬油拌著吃,所以我請(qǐng)服務(wù)員給每桌上了一小碟醬油。第二天我們?nèi)ネ患也蛷d吃飯,剛一進(jìn)門(mén),我就發(fā)現(xiàn)餐桌上已經(jīng)早早備好了醬油碟。餐廳老板告訴我,早上看到訂餐單上有我的名字,就想起我的客人有醬油拌飯的習(xí)慣,所以提前做了安排。這讓我非常感動(dòng),我只在喀什逗留短短兩天時(shí)間,以后有沒(méi)有機(jī)會(huì)再去也不得而知??杉偃缦麓卧偃タκ?,我想我是絕對(duì)沒(méi)有理由不選擇那家餐廳的。

如果我再問(wèn)你:32除以4等于多少?這下回答8肯定對(duì)了吧?錯(cuò)!事實(shí)上,遇到人數(shù)是32的團(tuán)隊(duì),很少有餐廳會(huì)慷慨地安排4張餐桌,大多是分給我們3桌“擠擠”了事——試想一下,老外的身型那么寬大,十多個(gè)人擠在一張餐桌前吃飯,用起筷子來(lái)難度肯定更大。況且3張餐桌,到底是排成11-11-10的陣型好呢,還是排成12-10-10好?著實(shí)又讓我傷透了腦筋。

那天在長(zhǎng)城腳下的咖啡館,客人們爬長(zhǎng)城去了,我坐在那里等他們,趁機(jī)趴在小桌上打盹。一個(gè)女孩坐在我旁邊的位子上,也是一個(gè)導(dǎo)游,一直在那里打電話,我睡了半個(gè)小時(shí),她就打了半個(gè)小時(shí),我豎著耳朵聽(tīng)了半個(gè)小時(shí)。電話的內(nèi)容是這樣的:旅行社請(qǐng)她帶一個(gè)團(tuán),這個(gè)團(tuán)的餐費(fèi)標(biāo)準(zhǔn)是30元/人,但是她問(wèn)了一圈餐廳,由于物價(jià)提升,現(xiàn)在的接待標(biāo)準(zhǔn)都是35元/人,但是旅行社撥款的額度卻不能提高。也就是說(shuō),找不到合適的餐廳,她就得自己承擔(dān)那多出來(lái)的5塊錢(qián)。她在旅行社和各家餐廳之間周旋了許久,最后還是沒(méi)能解決問(wèn)題。

我被她吵得睡意全無(wú),實(shí)在忍無(wú)可忍,抬起頭來(lái)問(wèn)她:

“你這個(gè)團(tuán)有多少客人?”

女孩看了我一眼,愣了一下,然后冷冷地答道:“散客,就5個(gè)人?!?/p>

我一聽(tīng)就火了:我還以為是50個(gè)客人呢!區(qū)區(qū)5個(gè)人,就算往每個(gè)人身上倒貼5塊錢(qián),也才不過(guò)25塊??!打了這么大一圈電話,手機(jī)費(fèi)都不止這么多了吧?為了25塊錢(qián),糾結(jié)了這么半天,說(shuō)到底,還是因?yàn)楦窬植粔虼蟀 ?/p>

第2篇:應(yīng)用題范文

1、在舊的知識(shí)基礎(chǔ)上學(xué)習(xí)新的知識(shí)。

新知識(shí)只有建立已有知識(shí)的基礎(chǔ)上,新知識(shí)的難度才能下降。學(xué)生學(xué)習(xí)才不會(huì)感到困難。而舊知識(shí)只有不斷增加其內(nèi)函和外延才能使之更加豐富。如:新授"比多比少"應(yīng)用題時(shí)要注意復(fù)習(xí)舊知識(shí)并同新知識(shí)相結(jié)合。在學(xué)習(xí)這類應(yīng)用題前必須讓學(xué)生正確理解和掌握“同樣多”“甲比乙多”“乙比甲少”等概念。在前期看圖說(shuō)話滲透的基礎(chǔ)上,在上新課前對(duì)這些知識(shí)進(jìn)行復(fù)習(xí)。學(xué)生在已經(jīng)能夠找出誰(shuí)是“較大數(shù)”,誰(shuí)是“較小數(shù)”,誰(shuí)是“相差數(shù)”的基礎(chǔ)上再學(xué)“比多比少”的應(yīng)用題就沒(méi)有什么困難了,只要根據(jù)關(guān)鍵句、條件和問(wèn)題就可以準(zhǔn)確地分析出數(shù)量關(guān)系。"比多比少"又是學(xué)習(xí)倍數(shù)應(yīng)用題基礎(chǔ),他們之間關(guān)鍵是確定標(biāo)準(zhǔn)量。

2、從感性認(rèn)識(shí)到系統(tǒng)認(rèn)知應(yīng)用題本質(zhì)。

一、二年級(jí)學(xué)生感性思維比較發(fā)達(dá),理性思維還剛開(kāi)始發(fā)展,所以在簡(jiǎn)單應(yīng)用題教學(xué)中就更離不開(kāi)感性知識(shí)。如我在教學(xué)“3朵紅花,2朵黃花,一共有幾朵花?”先以學(xué)生擺學(xué)具,多種感覺(jué)器官參與學(xué)習(xí),動(dòng)手動(dòng)腦。開(kāi)始3朵紅花,2朵黃花(3+2),再改為3朵黃花,2朵紅花(3+2),再改為3朵黃花,2朵花(3+2),再擺3根小棒,2根小棒(3+2)。通過(guò)一步步的操作學(xué)生能初步了解“把兩個(gè)部分合起來(lái)用加法進(jìn)行計(jì)算,同黃花、紅花等無(wú)關(guān),從而上升為認(rèn)知。出現(xiàn)線段圖:紅花5朵黃花3朵────────|──────一共?朵通過(guò)多種感官搜集材料,概括總結(jié)中可開(kāi)發(fā)學(xué)生智力。

3、教學(xué)時(shí)要注意不能單一的順向思維,而且必須重視逆向思維的培養(yǎng)。

學(xué)生在學(xué)習(xí)了很多順向敘述后,往往會(huì)形成許多“形而上學(xué)”的觀點(diǎn)。如:“比...多”用加法計(jì)算,“比...少”用減法計(jì)算的錯(cuò)誤思維。要排除這種情況的出現(xiàn)必須注意穿插逆向敘述題讓學(xué)生分析。如:“蘋(píng)果比梨多30千克”這一條件可以在不改變題意的情況下改變比較標(biāo)準(zhǔn):“梨比蘋(píng)果少30千克”。讓學(xué)生進(jìn)行這種變式練習(xí),培養(yǎng)他們的逆向思維能力。

4、教學(xué)時(shí)應(yīng)從文字題入手。

文字題的結(jié)構(gòu)相對(duì)較簡(jiǎn)單,應(yīng)用題較為復(fù)雜。解應(yīng)用題從文字題開(kāi)始可以降低學(xué)生學(xué)習(xí)難度。如:教學(xué)“份數(shù)關(guān)系”應(yīng)用題前已經(jīng)學(xué)習(xí)了對(duì)應(yīng)的文字題。幾個(gè)幾是多少?把一個(gè)數(shù)平均分成幾份求其中的一份是多少?教學(xué)“求總數(shù)”應(yīng)用題如:“二(1)班同學(xué)做游戲平均分成8組,每組6有人,一共有多少人?”就可以從“8個(gè)6是多少?”這個(gè)文字題擴(kuò)沖而得,不用分析學(xué)生也能得出倆者結(jié)構(gòu)相同,計(jì)算方法也完全相同??傊诮虒W(xué)時(shí)要盡量化難為易,讓學(xué)生清晰的認(rèn)知其結(jié)構(gòu)。

二、在教學(xué)初級(jí)局部知識(shí)時(shí)注意滲透后續(xù)教學(xué)內(nèi)容因素,為知識(shí)之間的滲透和正遷移提供條件。

1、在教學(xué)10以內(nèi)數(shù)的認(rèn)識(shí)時(shí),滲透“部分”與“總數(shù)”之間的數(shù)量關(guān)系。為學(xué)習(xí)“求總數(shù)”“求部分?jǐn)?shù)”(求剩余)應(yīng)用題打下基礎(chǔ)。如:3認(rèn)學(xué)生在說(shuō)“3可以分成2和1”的基礎(chǔ)上說(shuō)“3可以分成兩

12部分,一部分是1,另一部分是2,把1和2這兩部分合并起來(lái)就是3”。在數(shù)的組成教學(xué)中就滲透了"部分"、"總數(shù)"的數(shù)量關(guān)系。同時(shí)滲透線段圖的畫(huà)法,幫助學(xué)生進(jìn)一步理解總數(shù)、部分的關(guān)系。

12?21?

①──────②──────③──────

?33

通過(guò)對(duì)以上三個(gè)線段圖的分析可以滲透"求總數(shù)"、"求部分"的線段圖。

2、在看圖說(shuō)話中滲透“同樣多”、“相差”的概念,為學(xué)習(xí)“相差關(guān)系”應(yīng)用題做好早期的孕伏。如:

......說(shuō)話:①蘋(píng)果對(duì)香蕉,一個(gè)對(duì)一個(gè)結(jié)同果樣多。讓學(xué)生用手......指,熟悉“同樣多”這一概念。......②杯子對(duì)杯蓋,一個(gè)對(duì)一個(gè),杯子沒(méi)有了,杯蓋還有1個(gè),杯蓋比杯子多1個(gè),杯蓋比較多。......③杯子對(duì)杯蓋,一個(gè)對(duì)一個(gè),杯蓋還有1個(gè),杯子......沒(méi)有了,杯子比杯蓋少1個(gè),杯子比較少。通過(guò)......這組看圖說(shuō)話可以讓學(xué)生很早就認(rèn)識(shí)“較大數(shù)”“較小數(shù)”并能很好的找出它們。

3、增加感性認(rèn)識(shí),讓學(xué)生積累更多的感性知識(shí)。一、二年級(jí)學(xué)生生活經(jīng)驗(yàn)很少,應(yīng)用題往往不知其所云,這就更加談不上理解題意了。所以在教前要給學(xué)生足夠多的感性認(rèn)識(shí)。有了教前以上三個(gè)方面的鋪墊,教時(shí)就簡(jiǎn)單多了。

三、練習(xí)時(shí)注意充分運(yùn)用變式。

教材中出現(xiàn)的例題一般比較典型,敘述時(shí)往往帶有明顯的特征詞。這樣教學(xué)后學(xué)生往往只認(rèn)識(shí)基本題而不認(rèn)識(shí)變式題。簡(jiǎn)單化的把題中某一詞語(yǔ)與某種運(yùn)算方法建立起聯(lián)系,出現(xiàn)錯(cuò)誤。如前面所述的把“比...多”同加法“比...少”同減法建立起錯(cuò)誤的聯(lián)系,在解逆向思維的變式題就會(huì)出錯(cuò)。所以在教學(xué)中應(yīng)注重引導(dǎo)學(xué)生分析數(shù)量關(guān)系,讓各種形式的變式題在練習(xí)中交插出現(xiàn)。只有通過(guò)這樣的練習(xí)學(xué)生才能正確的找到各類應(yīng)用題的本質(zhì)特征,排除非本質(zhì)特征。變式的主要手法有:改變敘述順序、改變呈現(xiàn)方式、改變?cè)~語(yǔ)或思維方式等。變式的基本方法有以下幾種:

1、倒敘法。就是改變應(yīng)用題的敘述順序。在“份數(shù)關(guān)系”應(yīng)用題教學(xué)中,采用這種方法效果特別好。如:“二(1)班每組8人,6組有多少人?”這樣的順敘練習(xí)過(guò)多后,學(xué)生很容易形成“前一數(shù)x后一數(shù)”這種錯(cuò)誤的觀點(diǎn)。練習(xí)中變?yōu)椤岸?1)班有6組,每組8人,一共有多少人?”,讓學(xué)生比較練習(xí),找出相同的結(jié)構(gòu)。

2、隱蔽法。就是把其中的一個(gè)條件藏起來(lái)。如:“小紅、小明、小青每人手中各有4本書(shū),他們共有幾本書(shū)?”這樣設(shè)計(jì)學(xué)生能更加深刻地理解其數(shù)量關(guān)系及結(jié)構(gòu)。

第3篇:應(yīng)用題范文

【關(guān)鍵詞】 應(yīng)用題;情景特殊化;條件特殊化;目標(biāo)特殊化

特殊化策略即把原問(wèn)題構(gòu)造成特殊問(wèn)題,通過(guò)對(duì)特殊問(wèn)題的解決而獲得原問(wèn)題的解決.特殊化策略是一種“退”的策略,就是從復(fù)雜退到簡(jiǎn)單,從一般退到特殊,從抽象退到具體.特殊化策略在解決選擇題、填空題時(shí)有重要的應(yīng)用,同樣在解決應(yīng)用題時(shí)也有重要的應(yīng)用.

1.情景特殊化

例1 某項(xiàng)目要挖一個(gè)橫斷面為半圓的柱形坑,挖出的土只能沿道路MQ,NQ運(yùn)到Q處(如圖1),MQ=200 m,NQ=300 m,∠APB=60°.試說(shuō)明怎樣運(yùn)土才能最省工?

分析 這是一個(gè)最優(yōu)化問(wèn)題,其情景是工程挖土,學(xué)生對(duì)這些概念缺乏理性的認(rèn)識(shí).把情景特殊化可以幫助學(xué)生對(duì)題意加深理解,使問(wèn)題得到解決.這實(shí)際上是一個(gè)路程問(wèn)題,在半圓內(nèi)什么樣的點(diǎn)沿MQ到Q近,什么樣的點(diǎn)沿NQ到Q近.解決這個(gè)問(wèn)題只要考慮圓內(nèi)什么樣的點(diǎn)沿MQ到Q與沿NQ到Q距離相等這個(gè)情景.

解 MN2=QM2+QN2-2QM?QNcos60°=70000.

圖 1 由題意可得,半圓中的點(diǎn)有三種:

第一種是沿MQ至Q近;第二種沿NQ至Q近;

第三種是沿MQ,NQ到Q同樣近.

第三種是第一第二種的臨界狀態(tài),設(shè)P是臨界線上的任一點(diǎn),

則PM+MQ=PN+NQ,

所以PM-PN=QN-QM=300-200=100

所以點(diǎn)P的軌跡是以M,N為焦點(diǎn)的雙曲線的一支.以MN所在直線為x軸、MN中垂線為y軸建立平面直角坐標(biāo)系,則臨界線的軌跡方程為 x2 2500 - y2 15000 =1(x≥50).

所以運(yùn)土?xí)r將雙曲線左方的土沿MQ運(yùn)至Q處,右方的土沿NQ運(yùn)至Q處最省工.

該題原來(lái)是一個(gè)不等式問(wèn)題,思考及運(yùn)算都比較復(fù)雜,通過(guò)情景特殊化應(yīng)該說(shuō)問(wèn)題簡(jiǎn)單了,把不等式問(wèn)題轉(zhuǎn)化為等式問(wèn)題來(lái)研究.

2.條件特殊化

例2 一幢大樓共有n層,現(xiàn)指定一人到第k層去開(kāi)會(huì),問(wèn):當(dāng)k為何值時(shí),才能使所有開(kāi)會(huì)人員上、下樓梯所走的臺(tái)階數(shù)之和最???(假設(shè)每層樓梯的臺(tái)階數(shù)都相同,設(shè)為a)

分析 k是自變量,n是參數(shù),學(xué)生理解困難,無(wú)從下手,我們?nèi)粘I钪?/p>

最常見(jiàn)又和生活最貼近的樓層一般是6層或7層樓,讓學(xué)生從6層或7層樓開(kāi)始,

如何解決這個(gè)問(wèn)題,學(xué)生會(huì)得到6層樓(7層樓)時(shí)可能是在3層或4層

開(kāi)會(huì)所走的臺(tái)階數(shù)之和最小,對(duì)這個(gè)問(wèn)題產(chǎn)生了很重要的感性認(rèn)識(shí),對(duì)于n奇偶性不同,會(huì)有不同的計(jì)算結(jié)果.

若n=10,指定一人到第k層去開(kāi)會(huì),如何研究,把n特殊化,這個(gè)問(wèn)題就解決了,例2也就解決了.

如圖若k=4,上、下樓梯所走的臺(tái)階數(shù)之和y=(1+2+3)a+(1+2+3+4+5+6)a,

由此得到當(dāng)在第k層開(kāi)會(huì)時(shí),y=[1+2+3+…+(k-1)]a+[1+2+…+(10-k)]a,是關(guān)于k的二次函數(shù),求當(dāng)k為何值時(shí)y最小.把條件特殊化,使我們找到了解決這個(gè)問(wèn)題的方法.

解:大樓共有n層,在第k層開(kāi)會(huì),每層樓梯的臺(tái)階數(shù)為a,上、下樓梯所走的臺(tái)階數(shù)之和y=[1+2+3+…+(k-1)]a+[1+2+…+(n-k)]a,即y=[ k-1 k 2 + n-k 1+n-k 2 ]a,化簡(jiǎn)得:y= 1 2 a[2k2-2 1+n k+n 1+n ],a>0,k= 1+n 2 時(shí)y最小.因?yàn)閗是非零自然數(shù),當(dāng)n為奇數(shù)時(shí),k= 1+n 2 時(shí)y最??;當(dāng)n為偶數(shù)時(shí),k= 1+n±1 2 時(shí)y最小.

條件中含有字母n,k,這正是學(xué)生研究問(wèn)題中的薄弱環(huán)節(jié),把條件特殊化(即把n,k特殊化),可以幫助學(xué)生對(duì)問(wèn)題的理解,從特殊的目標(biāo)函數(shù)中抽象出一般的函數(shù)關(guān)系.

3.目標(biāo)特殊化

例3 A城市的出租車計(jì)價(jià)方式為:若行程不超過(guò)3千米,則按“起步價(jià)”10元計(jì)價(jià);若行程超過(guò)3千米,則之后2千米以內(nèi)的行程按“里程價(jià)”計(jì)價(jià),單價(jià)為1.5元/千米;若行程超過(guò)5千米,則之后的行程按“返程價(jià)”計(jì)價(jià),單價(jià)為2.5元/千米.設(shè)某人的出行行程為x千米,現(xiàn)有兩種乘車方案:(1)乘坐一輛出租車;(2)每5千米換乘一輛出租車.對(duì)不同的出行行程,(1)(2)兩種方案中哪種方案的價(jià)格較低?請(qǐng)說(shuō)明理由.

分析 本題的目標(biāo)是寫(xiě)出兩種乘車方案計(jì)價(jià)的函數(shù)關(guān)系式,然后比較它們的大小.對(duì)于(1)學(xué)生不難理解,但要寫(xiě)出(2)的計(jì)價(jià)函數(shù)關(guān)系式,因“每5千米換乘一輛出租車”是一個(gè)周期問(wèn)題,要寫(xiě)出含有周期的分段函數(shù)式學(xué)生在理解和操作上有一定的困難,如何降低難度,我們可以使目標(biāo)特殊化.先考慮0~10千米內(nèi)(1)(2)兩種方案計(jì)價(jià)的函數(shù)關(guān)系式.設(shè)方案(1)的計(jì)價(jià)函數(shù)為f(x),方案(2)的計(jì)價(jià)函數(shù)為g(x).則

f(x)= 10,0

g(x)= 10,0

比較f(x)與g(x)的大小就容易得多.觀察(2),因其周期為5,當(dāng)x∈(0,+∞)時(shí),就能自然寫(xiě)出f(x)與g(x).

解:f(x)= 10,0

g(x)= 13k+10,5k

要直接寫(xiě)出方案(2)的計(jì)價(jià)函數(shù)g(x),確實(shí)存在困難,把目標(biāo)特殊化(即寫(xiě)出兩個(gè)周期x∈ 0,10 內(nèi)的g(x)),使學(xué)生產(chǎn)生從感性到理性的過(guò)度.

4.應(yīng) 用

例4 A,B兩城市相距p(km),汽車從A城市勻速駛至B城市,速度不得超過(guò)a(km/h),已知車輛每小時(shí)行駛成本(單位:元)由固定和可變兩部分組成:固定部分為b元.可變部分跟速度v(km/h)的平方成正比,比例系數(shù)為c;問(wèn):汽車速度v為多大時(shí),才能使得全程運(yùn)行成本最???并求運(yùn)行成本的最小值.

分析 依照題意,汽車從A城市行駛到B城市所需時(shí)間為 p v ,學(xué)生能得到全程運(yùn)行成本為

y=p b v +cv ,v∈ 0,a ,并通過(guò)p( b v +cv)≥2p bc ,當(dāng)且僅當(dāng) b v =cv即v= b c 時(shí)求得y的最小值為2p bc .顯然這種解法是錯(cuò)誤的,原因在什么地方?因?yàn)関∈ 0,a , b c 是否在區(qū)間 0,a 內(nèi),這就要研究 b c 與a的大小.為了加強(qiáng)學(xué)生對(duì)這個(gè)問(wèn)題的認(rèn)識(shí),可以把a(bǔ)、b、c特殊化,例a=2,b=9,c=1,v= b c =3 0,2 ,加深了學(xué)生的影響.如何研究這個(gè)問(wèn)題,給學(xué)生提供了一次很好的鍛煉機(jī)會(huì).

第4篇:應(yīng)用題范文

這是解答應(yīng)用題的一項(xiàng)基本功。即使是簡(jiǎn)單應(yīng)用題也存在著一定的數(shù)量關(guān)系,絕不能因?yàn)閼?yīng)用題簡(jiǎn)單而忽視對(duì)數(shù)量關(guān)系的分析。分析清楚題里已知條件和問(wèn)題之間存在著什么樣的數(shù)量關(guān)系,才好確定解決問(wèn)題的方法。有些簡(jiǎn)單應(yīng)用題的數(shù)量關(guān)系是明顯的,學(xué)生容易弄清的。例如,“有5只黑兔,又跑來(lái)3只白兔,一共有幾只兔?”學(xué)生很容易弄清,把原有的5只和跑來(lái)的3只合并起來(lái),就可以知道一共有幾只兔。但是有些簡(jiǎn)單應(yīng)用題,學(xué)生分析數(shù)量關(guān)系就困難一些。例如,“有5只黑兔,白兔比黑兔多3只,白兔有多少只?”有些學(xué)生往往不清楚題里的數(shù)量關(guān)系,簡(jiǎn)單地看到“多3只”就判斷用加法,結(jié)果與遇到求白兔比黑兔多幾只的題發(fā)生混淆。因此,教學(xué)時(shí)最好通過(guò)操作、直觀使學(xué)生弄清題里的數(shù)量關(guān)系。由于通過(guò)操作和直觀,在學(xué)生的頭腦中對(duì)所學(xué)的應(yīng)用題的數(shù)量關(guān)系形成了表象,經(jīng)過(guò)多次練習(xí),就能初步形成概括性、規(guī)律性認(rèn)識(shí)。這樣教學(xué),學(xué)生對(duì)每種應(yīng)用題的數(shù)量關(guān)系都有一定的分析思路,就不容易發(fā)生混淆,也就不需要再教什么計(jì)算公式。

二、多進(jìn)行找單位“1”的訓(xùn)練

分?jǐn)?shù)和百分?jǐn)?shù)應(yīng)用題中,找準(zhǔn)單位“1”是很重要的,一些學(xué)生老是列不對(duì)算式,主要是沒(méi)有找對(duì)單位“1”。一般地,“比”“是”“占”等字后面的量就是單位“1”的量,可以根據(jù)單位“1”的量是否知道,列出算式,解答應(yīng)用題。但有些應(yīng)用題則不能機(jī)械地確定單位“1”。

例.甲數(shù)是50,乙數(shù)是20,從甲數(shù)調(diào)整多少到乙數(shù)后,甲數(shù)是乙數(shù)的3/4?

如果光從題目字面的意思去分析,多數(shù)學(xué)生會(huì)把乙數(shù)看作單位“1”的量,因?yàn)椤凹讛?shù)是乙數(shù)的3/4”。但是這樣不利于問(wèn)題的求解。換個(gè)角度,把“甲乙兩數(shù)的和”看作單位“1”的量,這道題就好解得多了。因?yàn)?不管甲數(shù)和乙數(shù)怎么調(diào)整,它們的和始終是不變的。從“甲數(shù)是乙數(shù)的3/4”可以知道甲數(shù)是“甲乙兩數(shù)的和”的3/7,用(50+20)×3/7求出調(diào)整后的甲數(shù),甲數(shù)調(diào)整前后的差就是要調(diào)出去的數(shù)。

三、聯(lián)系運(yùn)算的意義來(lái)選擇運(yùn)算方法

在分析數(shù)量關(guān)系的基礎(chǔ)上緊密聯(lián)系運(yùn)算的意義(或含義),把對(duì)運(yùn)算的意義(或含義)的理解與應(yīng)用直接聯(lián)系起來(lái),很容易確定運(yùn)算方法。例如,當(dāng)學(xué)生分析出要把兩個(gè)數(shù)合并(結(jié)合應(yīng)用題內(nèi)容具體分析,如上面求白兔的只數(shù)的應(yīng)用題),就聯(lián)想到用加法;當(dāng)分析出要從一個(gè)數(shù)里去掉一部分,就聯(lián)想到用減法;當(dāng)分析出要求幾個(gè)幾是多少,就聯(lián)想到用乘法;當(dāng)分析出要把一個(gè)數(shù)平均分成幾份求一份是多少或者求一個(gè)數(shù)里有幾個(gè)另一個(gè)數(shù),就聯(lián)想到用除法。對(duì)于分?jǐn)?shù)應(yīng)用題也是一樣,當(dāng)分析出要求一個(gè)數(shù)的幾分之幾是多少,聯(lián)想到一個(gè)數(shù)乘以分?jǐn)?shù)的意義,可以確定用乘法;反過(guò)來(lái)當(dāng)分析出一個(gè)數(shù)(未知數(shù))的幾分之幾等于多少(已知),要求未知的數(shù)(如上面求果樹(shù)的總棵數(shù)的應(yīng)用題),聯(lián)想到可直接列方程解,或聯(lián)想到分?jǐn)?shù)除法的意義,可確定用除法。由于運(yùn)算的意義(或含義)與分析應(yīng)用題的數(shù)量關(guān)系建立起直接聯(lián)系,學(xué)生在解答應(yīng)用題的過(guò)程中一方面加深對(duì)運(yùn)算意義(或含義)的理解,一方面學(xué)會(huì)應(yīng)用運(yùn)算的意義(或含義)來(lái)解題,從而提高學(xué)生自覺(jué)地應(yīng)用所學(xué)的數(shù)學(xué)知識(shí)正確地解決實(shí)際問(wèn)題的能力。

四、培養(yǎng)檢驗(yàn)的良好習(xí)慣

第5篇:應(yīng)用題范文

1.應(yīng)用題篇幅較長(zhǎng)

在教學(xué)過(guò)程中,教師總是在抱怨,學(xué)生應(yīng)用題的解題能力差,讀不懂應(yīng)用題,找不到量與量之間的關(guān)系。原因在于應(yīng)用題在提出量與量之間關(guān)系時(shí),會(huì)設(shè)置一個(gè)特定的場(chǎng)景,導(dǎo)致應(yīng)用題的篇幅比較長(zhǎng)且都是文字的表述。然而,現(xiàn)在學(xué)生的喜歡簡(jiǎn)單、直接,對(duì)長(zhǎng)篇幅的文字產(chǎn)生了一定的厭煩、恐懼心理,不能靜下心審題,自然就解不了題。

2.學(xué)生對(duì)知識(shí)應(yīng)用能力薄弱

解應(yīng)用題需要學(xué)生自己找關(guān)系,存在著一定的困難。同時(shí),在平時(shí)的教學(xué)中,學(xué)生接觸應(yīng)用題的機(jī)會(huì)比較少,導(dǎo)致學(xué)生對(duì)應(yīng)用題因陌生而產(chǎn)生畏難。

初中階段的應(yīng)用題主要出現(xiàn)在一元一次不等式、一元一次方程、二元一次方程、方程組、概率、幾何等問(wèn)題中。教師在一般的教學(xué)過(guò)程中總是分塊講解,分塊復(fù)習(xí)時(shí),讓學(xué)生自然想到解題方法,而沒(méi)有讓學(xué)生思考為什么要用這個(gè)方法去解題。

近幾年的中考試卷中,應(yīng)用題所占比重越來(lái)越大,但是學(xué)生得分率卻還是不高。如何在較短的時(shí)間、較少的機(jī)會(huì)下,讓學(xué)生擺脫解應(yīng)用題的陰影,讓學(xué)生提高解應(yīng)用題的能力成為教師應(yīng)該思考的問(wèn)題。

二、應(yīng)用題教學(xué)手段

解應(yīng)用題主要順序是:審題找量之間關(guān)系(確定方法)設(shè)元列式求解檢驗(yàn)解答。初中數(shù)學(xué)中的應(yīng)用題主要出現(xiàn)在一元一次不等式、一元一次方程、二元一次方程、方程組、概率、幾何中,不管用哪種方法,大致的思路是一致的。

1.找題中的有效信息

針對(duì)長(zhǎng)篇的應(yīng)用題,學(xué)生的審題能力需要提高。教師在講解過(guò)程中,要教學(xué)生有效提取信息,并對(duì)這些有效信息進(jìn)行一定的標(biāo)注,將“廢話”刪除。

例如:有一種大棚種植的西紅柿,經(jīng)過(guò)實(shí)驗(yàn),其單位面積的產(chǎn)量與這個(gè)單位面積種植的株數(shù)成構(gòu)成一種函數(shù)關(guān)系。每平方米種植4株時(shí),平均單株產(chǎn)量為2kg;以同樣的栽培條件,每平方米種植的株數(shù)每增加1株,單株產(chǎn)量減少1/4kg。問(wèn)每平方米種植多少株時(shí),能獲得最大的產(chǎn)量?最大的產(chǎn)量為多少?

在整個(gè)題目中,我們要的是變化過(guò)程,前面的“有一種大棚種植的西紅柿,經(jīng)過(guò)實(shí)驗(yàn),其單位面積的產(chǎn)量與這個(gè)單位面積種植的株數(shù)成構(gòu)成一種函數(shù)關(guān)系”這句話其實(shí)就只是闡述了這樣一件事情,它就是“廢話”,重點(diǎn)在下面,這樣題干就縮短了很多。

2.找各量之間的關(guān)系

在解應(yīng)用題的過(guò)程中,學(xué)生總是把握不好用哪種方法來(lái)解,分不清是哪類應(yīng)用題,主要是不清楚題目中量與量之間的關(guān)系,尤其是當(dāng)題目中量比較多的時(shí)候,更加難以判斷。我們可以借助輔助手段來(lái)分析題目,比如列表法、圖示法。這樣不但能清晰地知道每個(gè)量的變化過(guò)程,而且還能發(fā)現(xiàn)量與量之間的關(guān)系,找到對(duì)應(yīng)的計(jì)算公式,確定對(duì)應(yīng)的解題方法。

如下面這題:某記者團(tuán)有48人要住在某招待所,招待所一樓尚未住宿的客房比二樓少5間,如果全部住一樓,每間住5人,則住不滿,每間住4人,則不夠??;如果全部住在二樓,每間住4人,則住不滿,每間住3人,則不夠住,招待所一樓和二樓各有幾間尚未住客的客房?

在這個(gè)題目中,量很多,但是在本題中有很多明顯的字眼“不滿”“不夠”,如果學(xué)生掌握牢固,那么就能確定一定是用不等式來(lái)解。但是基礎(chǔ)不好的學(xué)生,可以通過(guò)列表找到量之間的關(guān)系,而且能確定下用什么方法來(lái)解題。如下表:

從上面的表格就能很清晰地將題目中的量整理出來(lái),而且還能找到用不等式的解題方法。

所以在解應(yīng)用題的過(guò)程中,不能單純地鉆研題目,要使用一些輔助手段,比如上面的列表法,還有其他的輔助手段,如解路程等問(wèn)題中的圖示法,也是常用而且實(shí)用的方法。

3.歸納題型

初中的數(shù)學(xué)應(yīng)用題其實(shí)類型不是很多,從解題方式上可分為方程、函數(shù)、不等式、統(tǒng)計(jì)及幾何。在這些分塊中,統(tǒng)計(jì)基本就是求概率,幾何基本都是跟圖形有關(guān),而且一般圖形都是給出的,關(guān)鍵是前面的方程、函數(shù)、不等式之間的區(qū)別。

在方程、函數(shù)、不等式三者之間,不等式會(huì)稍微清晰一點(diǎn),往往會(huì)存在一些不等的字眼,如不少于、不大于、不滿、不夠、多出、少于等。方程和函數(shù),都是等量關(guān)系,學(xué)生比較容易混淆。這兩者主要的區(qū)分在于:方程在初中階段只有一元的方程和二元的方程組,只設(shè)一個(gè)未知數(shù)的,那就用方程解題。當(dāng)提中出現(xiàn)兩個(gè)未知量時(shí),如果兩個(gè)量關(guān)系不是那么直接,而且這兩個(gè)量最后是確定的,可以用方程組;如果這兩個(gè)量是在變化的,就用函數(shù)來(lái)解決。

例如:水果市場(chǎng)某批發(fā)商經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨不變的情況下,若每千克漲價(jià)一元,日銷售量將減少20千克。(1)先要保證每天盈利6000元,同時(shí)又要讓顧客盡可能多得地得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?(2)若改批發(fā)商但村從經(jīng)濟(jì)角度看,那么每千克應(yīng)漲價(jià)多少元,能使商場(chǎng)獲利最多?

在解第一題的過(guò)程中,可以用一元二次方程,設(shè)每千克漲價(jià)x元,列式(10+x)(500-20x)=6000,計(jì)算出x的值。也可以用二次函數(shù),設(shè)每千克漲價(jià)x元,每天盈利為y元,可列式y(tǒng)=(10+x)(500-20x),令y=6000,求出x的值。

第6篇:應(yīng)用題范文

創(chuàng)設(shè)恰當(dāng)?shù)那榫场P抡n程實(shí)施過(guò)程中,有不少專家呼吁數(shù)學(xué)課堂要扎實(shí)、有效,不能一味地追求情境的新奇,片面的追求出奇制勝?!皩?shí)用”既指素材在教學(xué)中實(shí)用,又指素材要讓學(xué)生感受到數(shù)學(xué)與生活的聯(lián)系,是現(xiàn)實(shí)的、有意義的。在教學(xué)時(shí),可以根據(jù)實(shí)際情況,給學(xué)生提供一些反映周圍世界真實(shí)情況的問(wèn)題情境。比如“平均數(shù)”的教學(xué),就可以創(chuàng)設(shè)如下情境。

比一比,哪組同學(xué)每分鐘口算成績(jī)好?

甲組:

乙組:

讓學(xué)生通過(guò)討論,怎樣比較兩組的口算成績(jī),知道人數(shù)不同不好直接比總數(shù),產(chǎn)生該怎么比的問(wèn)題,切入新課。學(xué)生很快進(jìn)入學(xué)習(xí)狀態(tài),從學(xué)生身邊熟悉的事例作導(dǎo)入,學(xué)生容易理解,時(shí)間省,效果好。

精心設(shè)計(jì)問(wèn)題,提倡研究探索。研究性學(xué)習(xí)必須有研究的對(duì)象,所以教師必須為學(xué)生的學(xué)習(xí)提供研究的對(duì)象,并且提供的研究對(duì)象必須具有吸引力,具有挑戰(zhàn)性,能面向全體學(xué)生,而且要根據(jù)課堂教學(xué)實(shí)際設(shè)計(jì)問(wèn)題。有的可根據(jù)目標(biāo)直接設(shè)計(jì)問(wèn)題,有的要分階段性目標(biāo)設(shè)計(jì)問(wèn)題,再到達(dá)最終目的。對(duì)問(wèn)題的設(shè)計(jì),有的由學(xué)生討論提出,有的由教師直接提出。無(wú)論由誰(shuí)提出,教師都應(yīng)鼓勵(lì)學(xué)生討論解決,特別是要多設(shè)計(jì)討論環(huán)節(jié),對(duì)一些沒(méi)有討論價(jià)值的問(wèn)題一點(diǎn)即可。教師要充分發(fā)揮主導(dǎo)作用,點(diǎn)撥、指導(dǎo)、參與、組織學(xué)生主動(dòng)協(xié)作,探究問(wèn)題。

案例:教學(xué)“求一個(gè)數(shù)比另一個(gè)數(shù)多(少)幾分之幾的應(yīng)用題”中,教師出示:電腦城今天售出聯(lián)想牌電腦20臺(tái),華碩牌電腦15臺(tái),由學(xué)生討論可提出哪些問(wèn)題。學(xué)生覺(jué)得很容易,紛紛發(fā)表意見(jiàn),提出的問(wèn)題有十來(lái)種,涉及到一年級(jí)始的應(yīng)用題,都可以自己解決。此時(shí)教師趁熱打鐵,結(jié)合學(xué)生提出的問(wèn)題及解決方法提出新問(wèn)題。聯(lián)想牌電腦的售出數(shù)與華碩牌電腦的售出數(shù)可以比較,那它們的相差數(shù)能否與聯(lián)想牌電腦數(shù)進(jìn)行比較呢?在學(xué)生肯定之后引導(dǎo)提出,“聯(lián)想牌電腦售出數(shù)比華碩牌電腦售出數(shù)多的臺(tái)數(shù)是聯(lián)想牌電腦的幾分之幾(即售出的聯(lián)想牌電腦比華碩牌電腦多幾分之幾)等新問(wèn)題”。

這樣教學(xué)面向了全體,好、中、差生都有有表現(xiàn)自己的機(jī)會(huì),并且新知識(shí)在舊知識(shí)的復(fù)習(xí)、運(yùn)用中自然顯現(xiàn)。學(xué)生的交流討論非常熱烈,從情感受上感到自信。

強(qiáng)調(diào)情感體驗(yàn),收獲成功喜悅。學(xué)生在討論完問(wèn)題后,可以讓小組代表匯報(bào)討論情況。學(xué)生討論的情況不可能千遍一律,針對(duì)小組討論匯報(bào)中出現(xiàn)的共性問(wèn)題,典型問(wèn)題或容易混淆的問(wèn)題組織展開(kāi)二次討論。鼓勵(lì)學(xué)生多討論,提高學(xué)生對(duì)問(wèn)題認(rèn)識(shí)的深度、廣度和準(zhǔn)確度。從討論中鼓勵(lì)發(fā)散求異,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。

案例:在學(xué)完分?jǐn)?shù)乘除混合應(yīng)用題之后,教師設(shè)計(jì)了三道應(yīng)用題讓學(xué)生去比較,去討論,去體驗(yàn)。

(1)花園里有180朵,喇叭花是的4/5,玫瑰花是喇叭花的2/3,玫瑰花有多少朵?

(2)花園里有180朵,是喇叭花的5/4,喇叭花是玫瑰花的2/3,玫瑰花有多少朵?

(3)花園里有180朵,喇叭花的朵數(shù)是的4/5,又是玫瑰花的2/3,玫瑰花有多少朵?

學(xué)生通過(guò)對(duì)這三個(gè)應(yīng)用題的觀察,體驗(yàn)了由簡(jiǎn)單到復(fù)雜分?jǐn)?shù)應(yīng)用題的解法共性和不同之處,明辯了分?jǐn)?shù)應(yīng)用題的特點(diǎn)和解題思路。在情感上體驗(yàn)了知識(shí)運(yùn)用,解決問(wèn)題的喜悅,也進(jìn)一步增強(qiáng)了對(duì)學(xué)習(xí)的自信。

立足本課,上下貫通。在應(yīng)用題教學(xué)中,教師不能以完成本課的教學(xué)目的為目的,而是在結(jié)合本課內(nèi)容提出與本課內(nèi)容聯(lián)系密切,在以前或以后課中已經(jīng)出現(xiàn)或?qū)⒁霈F(xiàn)的問(wèn)題創(chuàng)設(shè)一個(gè)迫切需要探索的新的問(wèn)題情境,留下懸念,讓學(xué)生去探索舊知新用。

案例:在分?jǐn)?shù)應(yīng)用題教學(xué)中教師出示例題:大公雞和大母雞共180只,其中大母雞的只數(shù)是大公雞的1/5,大公雞和大母雞各多少只?在完成方程解的教學(xué)任務(wù)后,教師提問(wèn):還能用什么方法解答?有學(xué)生用以前學(xué)過(guò)的“按比例分配”知識(shí)來(lái)解答。再引導(dǎo)提出:大母雞只數(shù)是大公雞的1/5,那么,大母雞和大公雞的總和是大公雞的幾分之幾(1+1/5)?讓學(xué)生探索交流,這為后面的教學(xué)創(chuàng)設(shè)了一個(gè)迫切需要解決的問(wèn)題情境,留下了一個(gè)懸念。

在小學(xué)應(yīng)用題教學(xué)中,面對(duì)的是參差不齊,基礎(chǔ)不一的學(xué)生。教師不能在教學(xué)中只一味地注重如何解題。其實(shí)學(xué)會(huì)了解題并不等于完成了教學(xué)任務(wù)。教學(xué)中應(yīng)面向全體,“使不同的人在數(shù)學(xué)上得到不同的發(fā)展”。課堂教學(xué)上創(chuàng)設(shè)的情境,設(shè)計(jì)的問(wèn)題,知識(shí)和技能的掌握和運(yùn)用都要能贏得學(xué)生的歡心,這樣學(xué)生在解決問(wèn)題形成知識(shí)的過(guò)程中,既訓(xùn)練了思維和分析表達(dá)能力,也培養(yǎng)了學(xué)生的創(chuàng)新精神。

繼承傳統(tǒng)吸取精華。引導(dǎo)學(xué)生認(rèn)真分析生活情境中的數(shù)學(xué)因素,發(fā)現(xiàn)數(shù)學(xué)問(wèn)題的主要矛盾,分析數(shù)學(xué)問(wèn)題中的內(nèi)在聯(lián)系,以及學(xué)會(huì)一些構(gòu)建數(shù)學(xué)模型的具體方法等等,都可以成為小學(xué)數(shù)學(xué)課改時(shí),老師引導(dǎo)學(xué)生去“自主地從實(shí)際問(wèn)題情境中探索隱含的數(shù)學(xué)模型,然后試圖去解決的學(xué)習(xí)過(guò)程,體現(xiàn)數(shù)學(xué)化的過(guò)程”值得傳承的好辦法。應(yīng)用題的傳統(tǒng)教學(xué)的線段圖法,分析法,綜合法等,在具體的問(wèn)題解決過(guò)程中,各種方法是相互滲透,相互儲(chǔ)存的,借助于圖形、圖表、多媒體演示等策略,來(lái)幫助解題。合理運(yùn)用聯(lián)系、分析、想象等基本解題策略有助于培養(yǎng)學(xué)生的解題能力,是一種具有廣泛遷移性的解任何題都需具備的能力,是一種終生受用的本領(lǐng)。

案例:“平均數(shù)”教學(xué)中,學(xué)生對(duì)平均數(shù)的理解,可以這樣展開(kāi):教師課件出示三堆不等的積木(2塊、7塊、3塊),問(wèn):要使每堆的積木相等,你有哪些辦法?學(xué)生展開(kāi)討論后,回答:把多的移到少的地方,也可以把三堆合起來(lái)再分。教師根據(jù)學(xué)生回答課件演示,方法一是把第2堆移2塊到第一堆,移1塊到第3堆,每堆4塊。讓學(xué)生仔細(xì)觀察移的過(guò)程,然后指出這個(gè)4就是2、7、3這三個(gè)數(shù)的平均數(shù)。再讓學(xué)生說(shuō)說(shuō)7、8、9的平均數(shù)是多少,你是怎么想的。

暴露學(xué)生的思維,體現(xiàn)“平均數(shù)”移多補(bǔ)少的本源;同時(shí)數(shù)形結(jié)合,把“形”的操作過(guò)程過(guò)度到“數(shù)”的思考過(guò)程。方法二也根據(jù)學(xué)生的回答進(jìn)行操作,再讓學(xué)生用式子把過(guò)程表示出來(lái),體會(huì)平均數(shù)的作用,理解平均數(shù)的計(jì)算方法。

注重培養(yǎng)思維品質(zhì)。1.訓(xùn)練基本的思考方法。解答應(yīng)用題最基本的方法是綜合法和分析法,通過(guò)有關(guān)的解題活動(dòng),使學(xué)生熟練掌握?qǐng)?zhí)果溯因和由因?qū)Ч姆椒?,這樣有助于發(fā)展學(xué)生思維的敏捷性和靈活性,當(dāng)這兩法熟練后,再著力訓(xùn)練綜合分析法,它比單純的使用分析法或綜合法更有效,可以彌補(bǔ)二者的局限性。2.進(jìn)行基本的體形訓(xùn)練。通過(guò)基本的體形訓(xùn)練,使學(xué)生將解題方法和基本體形有機(jī)結(jié)合起來(lái),達(dá)到理論和實(shí)踐相結(jié)合的目的、小學(xué)生來(lái)說(shuō)也要有積極的創(chuàng)造精神,敢于質(zhì)疑問(wèn)題,樂(lè)于標(biāo)新立異,善于利用竅門(mén)。這種創(chuàng)造精神加速促進(jìn)解題思路的形成。

為此,在教學(xué)中應(yīng)做到以下幾點(diǎn)工作:①提供良好的氣氛,充分發(fā)揮學(xué)生的主體作用。鼓勵(lì)學(xué)生多想、多說(shuō)、多做,敢于問(wèn)教師和向同學(xué)挑戰(zhàn),形成師生民主、平等的民主氣氛。②提倡一題多解,在解題過(guò)程中通過(guò)一題多解棄劣選優(yōu),發(fā)現(xiàn)最好思路,并對(duì)之評(píng)價(jià)表?yè)P(yáng),這樣就大大激發(fā)了學(xué)生的創(chuàng)造精神。因而,學(xué)生樂(lè)于多解,善于巧解。

第7篇:應(yīng)用題范文

【關(guān)鍵詞】分?jǐn)?shù)應(yīng)用題 思維與方法 解題

分?jǐn)?shù)應(yīng)用題,是六年級(jí)數(shù)學(xué)最重要也是最難的知識(shí)點(diǎn),同時(shí)也是變化最多的知識(shí)點(diǎn)。在此之前整個(gè)小學(xué)階段學(xué)過(guò)的應(yīng)用題,不管是數(shù)學(xué)的,還是奧數(shù)的,把題中的數(shù)字換成分?jǐn)?shù),就成了分?jǐn)?shù)應(yīng)用題。所以,學(xué)習(xí)這章,要特別注意從思維和方法上去把握,以思維與方法上的“不變”應(yīng)對(duì)題意上的“萬(wàn)變”。

1.先要弄清兩個(gè)概念:帶單位的分?jǐn)?shù)和不帶單位的分?jǐn)?shù)

帶單位的分?jǐn)?shù),如3/4噸,叫數(shù)量,與我們以前學(xué)過(guò)的“3噸”、“0.3噸”表示的意義一樣,都是表示一個(gè)物體的具體的數(shù)量。只不過(guò)在這里用分?jǐn)?shù)的形式表示出來(lái)而已。

不帶單位的分?jǐn)?shù),如3/4,叫分率,它表示一個(gè)數(shù)的幾分之幾。

由于這兩種分?jǐn)?shù)表示意義不同,出現(xiàn)在應(yīng)用題中,它們的分析思路、解題過(guò)程也不同。請(qǐng)仔細(xì)看下 面的對(duì)比例子:

例1.(1)一根鐵絲長(zhǎng)5米,用去了2/5米,還剩下多少米?(2)一根鐵絲長(zhǎng)5米,用去了2/5,還剩下多少米?

解析:(1)剩下的=總長(zhǎng)-用去的= 5 - 2/5=4又3/5(米)

(2)用去的: 5 × 2/5=2(米);剩下 5-2=3(米)

例2.(1)一根鐵絲,用去了2/5米,還剩下3米,這根鐵絲多長(zhǎng)?(2)一根鐵絲,用去了2/5,還剩下3米,這根鐵絲多長(zhǎng)?

解析:(1)總長(zhǎng)=用去的+剩下的=2/5 +3 =3又2/5(米)

(2) 3÷(1 - 2/5)=3 ÷ 3/5=5(米)

由此可見(jiàn),大家在做分?jǐn)?shù)應(yīng)用題時(shí),一定要看清楚題中的分?jǐn)?shù)是哪類分?jǐn)?shù)。

2.學(xué)生必背的幾種常見(jiàn)問(wèn)題的計(jì)算公式:

2.1 求A是B的幾分之幾?

A(前)÷B(后)

2.2 求一個(gè)數(shù)是另一個(gè)數(shù)的幾分之幾?

一個(gè)數(shù) ÷ 另一個(gè)數(shù) = 一個(gè)數(shù)是另一個(gè)數(shù)的幾分之幾

2.3 求一個(gè)數(shù)比另一個(gè)數(shù)多幾分之幾(或百分之幾)公式:

多的數(shù)量÷單位“1” = 一個(gè)數(shù)比另一個(gè)數(shù)多幾分之幾(或百分之幾)

2.4 求一個(gè)數(shù)比另一個(gè)數(shù)少幾分之幾(或百分之幾)公式:

少的數(shù)量÷單位“1” = 一個(gè)數(shù)比另一個(gè)數(shù)少幾分之幾(或百分之幾)

(3和4也可概括為:1.已知A比B多(少)幾分之幾。求A或B

A與B的差÷A 或A與B的差÷B)

2.5 打折的分?jǐn)?shù)應(yīng)用題。

含義:“八折”的含義是:現(xiàn)價(jià)是原價(jià)的8/10;“八五折”的含義是:現(xiàn)價(jià)是原價(jià)的85/100

公式:

現(xiàn)價(jià) = 原價(jià) × 折數(shù)(通常寫(xiě)成分?jǐn)?shù)或百分?jǐn)?shù)形式)

原價(jià)=現(xiàn)價(jià)÷折數(shù)

原價(jià)-現(xiàn)價(jià)=便宜的或原價(jià)×(1-折數(shù))

例1.國(guó)家一級(jí)保護(hù)動(dòng)物野生丹頂鶴,2001年全世界約有2000只,我國(guó)占其中的1/4,其他國(guó)家約有多少只?

分析與解答:

(1)找準(zhǔn)單位“1”.我國(guó)占其中的1/4,就是說(shuō)我國(guó)的野生丹頂鶴是全世界的1/4,“是”字的后面是全世界,所以要把全世界的野生丹頂鶴只數(shù)看作單位“1”;

(2)確定乘除法。單位“1”是2000只,即是已知的,所以用乘法。

(3)分析對(duì)應(yīng)率。用乘法解答的應(yīng)用題要分析所求的問(wèn)題是單位“1”的幾分之幾?因此要分析其它國(guó)家的野生丹頂鶴只數(shù)是全世界的幾分之幾。

分析:

全世界野生丹頂鶴(2000只)—— 1 (單位“1”已知用乘)

我國(guó)野生丹頂鶴 ——1/4

其它國(guó)家野生丹頂鶴(?只)——1-1/4 (分析問(wèn)題的對(duì)應(yīng)率,問(wèn)題比1少1/4所以是1-1/4)

列式:2000×(1-1/4)

解答(略)

例2. 人的心臟跳動(dòng)的次數(shù)隨年齡而變化。青少年每分鐘約跳75次,嬰兒每分鐘心跳的次數(shù)比青少年多跳4/5.嬰兒每分鐘心跳多少次?

分析與解答:

(1)找準(zhǔn)單位“1”.嬰兒每分鐘心跳的次數(shù)比青少年多跳4/5.“比”字后面是青少年。所以,要把青少年心跳的次數(shù)看作單位“1”。

(2)確定乘除法。單位“1”是已知的,所以用乘法。

(3)分析對(duì)應(yīng)率。用乘法解答的應(yīng)用題要分析所求的問(wèn)題是單位“1”的幾分之幾?因此要分析嬰兒每分鐘心跳次數(shù)是青少年的幾分之幾?

分析:

青少年心跳次數(shù)(75次)——- 1 (單位1是已知的,用乘法)

嬰兒心跳的次數(shù)(?次) ——1+4/5 (分析問(wèn)題的對(duì)應(yīng)率。比1多4/5,所以是1+4/5

列式:75 ×(1+4/5)

解答(略)

例3.某汽車廠去年計(jì)劃生產(chǎn)汽車12600輛,結(jié)果上半年完成全年計(jì)劃的5/9,下半年完成全年計(jì)劃的3/5。去年超產(chǎn)汽車多少輛?

分析:

全年計(jì)劃(12600輛)——1 (單位1是已知的,用乘法)

上半年完成——5/9

下半年完成——3/5

全年完成——5/9+3/5

全年超產(chǎn)——5/9+3/5-1 (分析問(wèn)題的對(duì)應(yīng)率。全年完成的-全年計(jì)劃)

列式:12600 ×(5/9+3/5-1)

解答(略)

例4.小紅家買來(lái)一袋大米,吃了5/8,還剩15千克。買來(lái)大米多少千克?

分析與解答:

(1)找準(zhǔn)單位“1”.吃了5/8就是吃了的千克數(shù)是買來(lái)大米的5/8.“是”字后面是買來(lái)大米。所以要把買來(lái)大米的千克數(shù)看作單位“1”.

(2)確定乘除法。買來(lái)的大米是未知的是所求的問(wèn)題。用除法解答。

(3)分析對(duì)應(yīng)率。用除法解答的應(yīng)用題要分析已知的數(shù)量是單位“1”的幾分之幾?因此此題要分析15千克(還剩的千克數(shù))是單位“1”的幾分之幾。

分析:

買來(lái)的大米(?千克)——1 (單位1是未知的,求單位1用除法)

吃了——5/8

還剩(15千克)——(1-5/8)(分析已知數(shù)的對(duì)應(yīng)率。還剩下1-5/8)

列式: 15 ÷(1-5/8)

解答(略)

例5.某工廠十月份用水480噸,比原計(jì)劃節(jié)約了1/9.十月份原計(jì)劃用水多少噸?

(1)找準(zhǔn)單位1.比原計(jì)劃節(jié)約了1/9.“比”字后面是原計(jì)劃。所以把原計(jì)劃看作單位1.

(2)確定乘除法。原計(jì)劃用水多少噸不知道,是所求的問(wèn)題。用除法解答。

(3)分析對(duì)應(yīng)率。用除法解答的應(yīng)用題要分析已知的數(shù)量是單位“1”的幾分之幾?因此此題要分析480噸(實(shí)際用水的噸數(shù))是單位“1”的幾分之幾。

分析:

原計(jì)劃用水(?噸)——1 (單位1是未知的,求單位1用除法)

實(shí)際比原計(jì)劃節(jié)約 ——1/9

實(shí)際用水(480噸)——1-1/9 (分析已知數(shù)的對(duì)應(yīng)率。

實(shí)際比1 少1/9 實(shí)際是1-1/9)

列式:480÷(1-1/9)

解答(略)

拓展:若把例5中第二個(gè)條件改成“比原計(jì)劃多用了1/9”怎樣解答?

分析:

原計(jì)劃用水(?噸)——1 (單位1是未知的,求單位1用除法)

實(shí)際比原計(jì)劃多用 ——1/9

實(shí)際用水(480噸)——1+1/9 (分析已知數(shù)的對(duì)應(yīng)率。 實(shí)際比1 多1/9;實(shí)際是1+1/9)

列式:480 ÷(1+1/9)

解答(略)

3.把分?jǐn)?shù)看成比的方法

分?jǐn)?shù)可以轉(zhuǎn)化成比,把比當(dāng)份數(shù),也是一種好的解題方法。

例 :學(xué)校田徑隊(duì)有35人,其中女生人數(shù)是男生人數(shù)的3/4,女生人數(shù)是多少?

解析:“女生人數(shù)是男生人數(shù)的3/4”轉(zhuǎn)化成比,就是:女生人數(shù)和男生人數(shù)之比是3:4,女生人數(shù)是3份,男生人數(shù)是4份,總共7份,總共35人,每份就是 35÷7=5(人),那么,女生人數(shù)就是5×3=15(人)

4.方程法

在解任何應(yīng)用題時(shí),方程都是一種不能忽視的備用方法

例:某校有學(xué)生465人,其中女生的2/3比男生4/5少20人,男生有多少人?

解析;設(shè)男生為x人,女生就有(465-x)人

第8篇:應(yīng)用題范文

關(guān)鍵詞:小學(xué)數(shù)學(xué) 應(yīng)用題 線段圖 關(guān)系

俗話說(shuō),授之以魚(yú),不如授之以漁。一個(gè)教師不僅要教給學(xué)生知識(shí),更重要的是交給學(xué)生學(xué)習(xí)知識(shí)的方法。在教科書(shū)中,關(guān)于線段的定義是:直線上兩點(diǎn)間的部分叫做線段。特點(diǎn):有兩個(gè)端點(diǎn)。有限長(zhǎng)。關(guān)于線段圖沒(méi)有定義,詞典中也沒(méi)有解釋??梢赃@樣理解:線段圖是有幾條線段組合在一起,用來(lái)表示應(yīng)用題中的數(shù)量關(guān)系,幫助人們分析題意,解答問(wèn)題的一種平面圖形。特點(diǎn):從抽象的文字到直觀的再創(chuàng)造、再演示的過(guò)程。

應(yīng)用線段圖解答應(yīng)用題有什么作用。

第一,借助于線段圖解題,可以化抽象的語(yǔ)言到具體、形象、直觀圖形。小學(xué)生年齡小,理解能力有限,而且社會(huì)經(jīng)歷又少,給理解題意帶來(lái)很大的困難。教師引導(dǎo)學(xué)生用線段圖的形式表示題目中的數(shù)量關(guān)系,更直觀,形象,具體。

第二,借助線段圖,可以化難為易,判斷準(zhǔn)確。有的應(yīng)用題,數(shù)量關(guān)系比較復(fù)雜,學(xué)生難以理清,借助線段圖可以準(zhǔn)確的找出數(shù)量間的對(duì)應(yīng)關(guān)系,很容易解出要求的問(wèn)題。

第三,借助線段圖,可以化繁為簡(jiǎn),發(fā)展學(xué)生思維。有些應(yīng)用題數(shù)量較多,數(shù)量關(guān)系學(xué)生感覺(jué)比較亂,學(xué)生容易混。

第四,借助線段圖,可以化知識(shí)為能力。線段圖不但使學(xué)生解答應(yīng)用題不再困難,而且借助線段圖,可以對(duì)學(xué)生進(jìn)行多種能力的培養(yǎng)。如一題多解能力的培養(yǎng)、根據(jù)線段圖來(lái)編應(yīng)用題,進(jìn)行說(shuō)話能力的培養(yǎng)、還可以直接根據(jù)線段圖進(jìn)行列式計(jì)算。線段圖畫(huà)的美觀大方,結(jié)構(gòu)合理,還可以對(duì)學(xué)生進(jìn)行審美觀念,藝術(shù)能力的訓(xùn)練。

那么,教師如何培養(yǎng)學(xué)生畫(huà)線段圖的能力。

一、從中低年級(jí)培養(yǎng),從簡(jiǎn)單題入手,是培養(yǎng)學(xué)生畫(huà)圖能力的基礎(chǔ)

有人認(rèn)為用線段圖幫助解題是高年級(jí)的事,是比較難的題才使用的方法,中低年級(jí)和比較簡(jiǎn)單的應(yīng)用題不需要畫(huà)畫(huà)線段圖。這種認(rèn)識(shí)是不適當(dāng)?shù)摹S械膶W(xué)生也錯(cuò)誤的認(rèn)為,這么容易的題,我不畫(huà)圖就能理解題意,把題做對(duì),何苦去自找麻煩。教師要講清,如果從小基礎(chǔ)打不牢固,到高年級(jí)遇到比較難的應(yīng)用題,需要畫(huà)線段圖輔助解題的時(shí)候,就會(huì)畫(huà)不出來(lái)或畫(huà)不正確,解題的能力就會(huì)的大大降低,就會(huì)影響思維的發(fā)展。所以,線段圖的培養(yǎng)一定要從中低年級(jí)培養(yǎng),從簡(jiǎn)單題入手,從小養(yǎng)成畫(huà)圖解題的意識(shí)和良好的畫(huà)圖技能技巧,打下堅(jiān)實(shí)的基礎(chǔ),到高年級(jí)才能如魚(yú)得水,應(yīng)用自如。

二、教師的指導(dǎo)、示范、點(diǎn)撥是培養(yǎng)學(xué)生畫(huà)圖能力的關(guān)鍵

學(xué)生剛學(xué)習(xí)畫(huà)線段圖,不知道從那下手,如何去畫(huà)。教師的指導(dǎo)、示范就尤為重要。(1)教師可以指導(dǎo)學(xué)生跟教師一步一步來(lái)畫(huà),找數(shù)量關(guān)系。也可以教師示范畫(huà)出以后,讓學(xué)生仿照重畫(huà)一遍,即使是把老師畫(huà)的圖照抄一邊,也是有收獲的。(2)學(xué)生可邊畫(huà)邊講,或互相講解。教師對(duì)有困難的學(xué)生一定要給以耐心的指導(dǎo)。(3)學(xué)生掌握了一定的技能后,教師可以放手讓學(xué)生自己去畫(huà),教師給以適時(shí)的點(diǎn)撥,要注意讓學(xué)生講清這樣畫(huà)圖的道理,可自己講,也可分組合作講。教師一定要讓學(xué)生體會(huì)用圖解題的直觀,形象,體會(huì)簡(jiǎn)潔、方便、易理解的特點(diǎn),提高應(yīng)用的自覺(jué)性、主動(dòng)性。

三、理解題意,找準(zhǔn)對(duì)應(yīng)上的數(shù)量關(guān)系是培養(yǎng)學(xué)生用圖解題的重點(diǎn)

線段圖不是盲目的畫(huà),隨心所欲的亂畫(huà)。教師要指導(dǎo)學(xué)生畫(huà)圖重點(diǎn)做到以下幾點(diǎn):(1)認(rèn)真讀題,全面理解題意,所畫(huà)的圖要與題目中的條件相符合。(2)圖中線段的長(zhǎng)短要和數(shù)值的大小基本一致,不要長(zhǎng)的線段標(biāo)出小的數(shù)據(jù)而短的線段標(biāo)出大的數(shù)據(jù)。圖要畫(huà)的美觀、大方、結(jié)構(gòu)合理,具有藝術(shù)性。(3)要按照題目的敘述順序,在圖上標(biāo)明條件。對(duì)于雙線段并列圖和多線段并列圖一定要分清先畫(huà)和后畫(huà)的順序,要找準(zhǔn)數(shù)量間的對(duì)應(yīng)關(guān)系,明確所求的問(wèn)題。這是分析題意和列算式的重點(diǎn),需要進(jìn)行大量的訓(xùn)練才能提高分析問(wèn)題和解決問(wèn)題的能力,并非一日之功。

四、知識(shí)的拓展和遷移,是線段圖應(yīng)用的難點(diǎn)

第9篇:應(yīng)用題范文

一、航行問(wèn)題中的不變量

在航行問(wèn)題中涉及的不變量包括船在靜水中的速度、水速、航行的距離,通常用來(lái)得到相等關(guān)系。

例1:一艘輪船往返于甲乙兩港之間,逆水航行需3小時(shí),順?biāo)叫行?小時(shí),水流速度是3公里/小時(shí),求輪船在靜水中的速度.

分析:題中往、返航行的距離和輪船在靜水中的速度都是不變量。

①不妨直接設(shè)輪船在靜水中的速度為x公里/小時(shí)。由往返航行的距離不變可得相等關(guān)系為:順?biāo)叫械木嚯x=逆水航行的距離。

由下面的表格分析可以得出方程為2(x+3)=3(x―3),求得x=15。

②間接設(shè)順?biāo)嫠┖叫械木嚯x為y公里,則輪船在靜水中的速度不變,可得相等關(guān)系為:順航時(shí)靜水中的速度=逆航時(shí)靜水中的速度。

方程為+3=-3,求得x=36

輪船在靜水中的速度為(36÷3)+3=15

二、方案分配問(wèn)題中的不變量

例2:某校住宿生若干人,若每間住宿8人,則有5人無(wú)處??;若每間宿舍增加1人,則還空35張床位,求有多少間宿舍?多少名學(xué)生?

分析:題中宿舍的數(shù)量與學(xué)生人數(shù)是不變量。

①設(shè)宿舍有x間,則由學(xué)生人數(shù)不變可得方程。此時(shí)相等關(guān)系為:第一種方案的學(xué)生人數(shù)=第二種方案的學(xué)生人數(shù),即8x+5=9x―35,求得x=40。

學(xué)生人數(shù)為:8×40+5=325(人)

②設(shè)學(xué)生人數(shù)為y人,則由宿舍數(shù)量不變可得方程。此時(shí)相等關(guān)系為:第一種方案的宿舍數(shù)=第二種方案的宿舍數(shù),即

,求得y=325。

宿舍數(shù)量為:(325―5)÷8=40(間)

例3:一個(gè)工人在規(guī)定時(shí)間內(nèi)生產(chǎn)一批零件,若每小時(shí)加工8個(gè),則可超產(chǎn)2個(gè),若每小時(shí)加工12個(gè),則可提前1小時(shí)完成。求加工的零件數(shù)和規(guī)定加工的時(shí)間。

分析:題中需加工的零件數(shù)和規(guī)定加工的時(shí)間均為不變量。

①設(shè)需加工的零件數(shù)為x個(gè),則由規(guī)定加工的時(shí)間不變得方程為

求得x=18。

規(guī)定加工的時(shí)間為(18+2)÷8=2.5(小時(shí))

②設(shè)規(guī)定加工的時(shí)間為y小時(shí),則由需加工的零件數(shù)不變得方程為8y-2=12(y-1),求得y=2.5。

需加工的零件數(shù)為8×2.5―2=18(個(gè))

三.濃度問(wèn)題中的不變量

例4:把含酒精60%的溶液9000克變成含酒精40%的溶液,需加水多少克?

分析:題中兩種溶液濃度不同,溶液質(zhì)量不同,所含的水的質(zhì)量不同,但所含的酒精質(zhì)量不變,即:加水前的溶液中酒精質(zhì)量=加水后的溶液中酒精質(zhì)量。

設(shè)需加水x克,可得方程為9000×60%=(9000+x)×40%,求得x=4500。

一般情況下濃度問(wèn)題中若加入溶質(zhì)(如酒精),則溶劑(如水)質(zhì)量不變;反之,若加入溶劑,則溶質(zhì)不變。這時(shí)不變量就可作為相等關(guān)系從而得到方程。

四、等積變形問(wèn)題

等積變形問(wèn)題是指形狀改變,而體積(或面積)不變。其隱含的等量關(guān)系是:變形前后體積(或面積)不變。

例5:用直徑為200毫米的圓鋼,鍛造一個(gè)長(zhǎng)、寬、高分別為300毫米、300毫米和80毫米的長(zhǎng)方體毛坯底板,應(yīng)截取圓鋼多少毫米?

分析:題中鍛造前后的兩個(gè)物體的體積不變,即:鍛造前截取的圓鋼的體積=鍛造后長(zhǎng)方體毛坯的體積。

設(shè)應(yīng)截取圓鋼x毫米,可得方程為

π x=300×300×80,解得

x=.

例6:一圓柱形水桶的高和底面直徑都是22厘米,盛滿水后把水倒入底面長(zhǎng)、寬分別是30厘米和20厘米的長(zhǎng)方體容器。求這個(gè)長(zhǎng)方體容器的高至少要多少厘米?

分析: 題中圓柱形水桶裝的水的體積是不變量,相等關(guān)系為:圓柱的體積=長(zhǎng)方體的體積。

設(shè)這個(gè)長(zhǎng)方體容器的高至少要x厘米,可得方程為π×22=30×20x,解得

相關(guān)熱門(mén)標(biāo)簽